精英家教网 > 高中数学 > 题目详情

【题目】如图所示,在五面体中,四边形为菱形,且的中点.

(1)求证:平面

(2)若平面平面,求点到平面的距离.

【答案】(1)见解析;(2)

【解析】分析:(1)中点,连接,由三角形中位线的性质及条件可得,从而得四边形为平行四边形,故,然后根据线面平行的判定定理可得结论.(2)由(1)得平面,故到平面的距离等于到平面的距离,并设为.然后根据等积法可得,即, 解得即为所求.

详解(1)取中点,连接

因为分别为中点,

所以

由已知

又在菱形为菱形中,

所以.

所以,

所以四边形为平行四边形,

所以.

平面平面

所以平面

(2)由(1)得平面

所以到平面的距离等于到平面的距离.

的中点,连

因为

所以

因为平面平面,平面平面平面

所以平面.

由已知得

所以等腰三角形的面积为.

到平面的距离为

,

解得,

∴点到平面的距离为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】关于函数的性质描述,正确的是__________.的定义域为;②的值域为;③的图象关于原点对称;④在定义域上是增函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数是定义在上的偶函数,当时, .

1)直接写出函数的增区间(不需要证明);

(2)求出函数 的解析式;

3)若函数 求函数的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)当时,求方程的解;

2)若方程上有实数根,求实数的取值范围;

3)当时,若对任意的,总存在,使成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,.

1)若函数上恒有意义,求的取值范围;

2)是否存在实数,使函数在区间上为增函数,且最大值为?若存在求出的值,若不存在请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设两实数不相等且均不为.若函数时,函数值的取值区间恰为,就称区间的一个“倒域区间”.已知函数.

1)求函数内的倒域区间”;

2)若函数在定义域内所有“倒域区间的图象作为函数的图象,是否存在实数,使得恰好有2个公共点?若存在,求出的取值范围:若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

讨论的单调性.

,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分12分)已知椭圆)的半焦距为,原点到经过两点的直线的距离为

)求椭圆的离心率;

)如图,是圆的一条直径,若椭圆经过两点,求椭圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在底边为等边三角形的斜三棱柱ABCA1B1C1中,AA1AB,四边形B1C1CB为矩形,过A1C作与直线BC1平行的平面A1CDAB于点D

(Ⅰ)证明:CDAB

(Ⅱ)若AA1与底面A1B1C1所成角为60°,求二面角BA1CC1的余弦值.

查看答案和解析>>

同步练习册答案