精英家教网 > 高中数学 > 题目详情

给出如下四个命题:

①若“”为假命题,则均为假命题;

②命题“若,则”的否命题为“若,则”;

③命题“任意”的否定是“存在”;

④在中,“”是“”的充要条件.

其中不正确命题的个数是    (    )

A.4             B.3              C.2             D.1

 

【答案】

D

【解析】

试题分析:对于①,两个命题中只要有一个是假命题,则“”即为假命题,所以①错误;对于命题“若”,则,其否命题为“若,则,所以②正确;全称命题的否定为特称命题,所以③正确;若A>B,当A不超过90°时,显然可得出sinA>sinB,当A是钝角时,由于,可得sin(π-A)=sinA>sinB,即 A>B是sinA>sinB的充分条件,当sinA>sinB时,亦可得 A>B,由此知 A>B的充要条件为sinA>sinB,所以④正确,综上不正确命题的个数为1.

考点:本题的考点是命题的真假判断与应用,命题之间的关系,并考查了充要条件的判断.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

给出如下四个命题
①对于任意的实数α和β,等式cos(α+β)=cosαcosβ-sinαsinβ恒成立;
②存在实数α,β,使等式cos(α+β)=cosαcosβ+sinαsinβ能成立;
③公式tan(α+β)=
tanα+tanβ
1-tanα•tanβ
成立的条件是α≠kπ+
π
2
(k∈Z)且β≠kπ+
π
2
(k∈Z);
④不存在无穷多个α和β,使sin(α-β)=sinαcosβ-cosαsinβ;
其中假命题是(  )
A、①②B、②③C、③④D、②③④

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x|x|+bx+c(b,c∈R),给出如下四个命题:①若c=0,则f(x)为奇函数;②若b=0,则函数f(x)在R上是增函数;③函数y=f(x)的图象关于点(0,c)成中心对称图形;④关于x的方程f(x)=0最多有两个实根.其中正确的命题
①②③
①②③

查看答案和解析>>

科目:高中数学 来源: 题型:

现给出如下四个命题:
①过点A(4,1)且在两坐标轴上的截距相等的直线共有两条;
②若平面α内的两条直线都与平面β平行,则α∥β;
③已知α∩β=l,若α内的直线m垂直于l,则α⊥β;
④已知α⊥β,α∩β=l,若α内的直线m与l不垂直,则m与β也不垂直.
请你写出其中所有真命题的序号:
①④
①④

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•闸北区一模)在实数集R中,我们定义的大小关系“>”为全体实数排了一个“序”.类似的,我们在复数集C上也可以定义一个称为“序”的关系,记为“>”.定义如下:对于任意两个复数z1=a1+b1i,z2=a2+b2i(a1,a2,b1,b2∈R),z1>z2当且仅当“a1>a2”或“a1=a2且b1>b2”.
按上述定义的关系“>”,给出如下四个命题:
①1>i>0; 
②若z1>z2,z2>z3,则z1>z3
③若z1>z2,则,对于任意z∈C,z1+z>z2+z;
④对于复数z>0,若z1>z2,则zz1>zz2
其中真命题的序号为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

给出如下四个命题:
①若a≥0,b≥0,则
2(a2+b2)
≥a+b

②若ab>0,则|a+b|<|a|+|b|;
③若a>0,b>0,a+b>4,ab>4,则a>2,b>2;
④若a,b,c,∈R,且ab+bc+ca=1,则(a+b+c)2≥3;
其中正确的命题是(  )

查看答案和解析>>

同步练习册答案