精英家教网 > 高中数学 > 题目详情
12.已知圆(x-1)2+(y+1)2=4关于直线mx+y-2m=0对称,则m的值为(  )
A.1B.-1C.$\frac{1}{3}$D.-$\frac{1}{3}$

分析 由题意可得,圆心(1,-1)在直线mx+y-2m=0上,把圆心坐标代入直线方程即可求得m的值.

解答 解:由题意可得,圆心(1,-1)在直线mx+y-2m=0上,
∴m-1-2m=0,解得 m=-1,
故选:B.

点评 本题主要考查直线和圆的位置关系,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.在极坐标系中,设曲线C1:ρ=2sinθ与C2:ρ=2cosθ的交点分别为A,B,则线段AB的垂直平分线的极坐标方程为(  )
A.ρ=$\frac{1}{sinθ+cosθ}$B.ρ=$\frac{1}{sinθ-cosθ}$C.θ=$\frac{π}{4}$(ρ∈R)D.θ=$\frac{3π}{4}$(ρ∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.在△ABC中,若c2=a2+b2-ab,则∠C=(  )
A.60°B.90°C.150°D.120°

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.写出命题P:?x∈(-∞,0),x2+x+1≤0的否定¬P:?x∈(-∞,0),x2+x+1>0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.如图四棱柱ABCD-A1B1C1D1中,AA1⊥面ABCD,四边形ABCD为梯形,AD∥BC,且AD=3BC,过A1,C,D三点的平面记为α,BB1与α的交点为Q,则以下四个结论:
①QC∥A1D②B1Q=2QB;③直线A1B与直线CD相交;④四棱柱被平面α分成的上下两部分的体积相等.其中正确的有①②.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.一个底面半径和高都为2的圆椎的表面积为(  )
A.4($\sqrt{2}$+1)πB.4(2$\sqrt{2}$+1)πC.4$\sqrt{2}$πD.8$\sqrt{2}$π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)=$\left\{\begin{array}{l}kx+2,x≤0\\-lnx,x>0\end{array}$,则下列关于y=f[f(x)]-2的零点个数判别正确的是(  )
A.当k=0时,有无数个零点B.当k<0时,有3个零点
C.当k>0时,有3个零点D.无论k取何值,都有4个零点

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.函数f(x)=loga(4-ax)在区间[0,2]上是减函数,则实数a的取值范围是(  )
A.(0,1)B.(1,2)C.(0,2)D.(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知圆O:x2+y2=16,在圆O上随机取两点A、B,使|AB|≤4$\sqrt{3}$的概率为(  )
A.$\frac{9}{15}$B.$\frac{1}{4}$C.$\frac{3}{5}$D.$\frac{2}{3}$

查看答案和解析>>

同步练习册答案