精英家教网 > 高中数学 > 题目详情
19.△ABC的内角A,B,C所对的边分别为a,b,c,且A,B,C成等差数列.命题p:“a,b,c成等比数列”;命题q:“△ABC是等边三角形”.则p是q的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

分析 △ABC中,A,B,C成等差数列.可得2B=A+C,又B+A+C=π,解得B=$\frac{π}{3}$.命题p:“a,b,c成等比数列”,可得b2=ac,利用余弦定理可得:a=c,可得△ABC是等边三角形.即p⇒q,反之也成立.

解答 解:∵△ABC中,A,B,C成等差数列.∴2B=A+C,又B+A+C=π,解得B=$\frac{π}{3}$.
命题p:“a,b,c成等比数列”,∴b2=ac,∴b2=a2+c2-2accos$\frac{π}{3}$=ac,化为(a-c)2=0,
解得a=c,∴a=b=c.∴△ABC是等边三角形.
即p⇒q,反之也成立.
则p是q的充要条件.
故选:C.

点评 本题考查了等差数列与等比数列的性质、余弦定理、充要条件的判定,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.设奇函数f(x)在(0,+∞)上为单调递增函数,且f(2)=0,则不等式$\frac{{f({-x})-f(x)}}{x}≥0$的解集(  )
A.[-2,0]∪[2,+∞)B.(-∞,-2]∪(0,2]C.(-∞,-2]∪[2,+∞)D.[-2,0)∪(0,2]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知x=$\frac{π}{6}$是函数f(x)=(asinx+cosx)cosx-$\frac{1}{2}$图象的一条对称轴.
(1)求函数f(x)的单调增区间;
(2)作出函数f(x)在x∈[0,π]上的图象简图.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若函数f(x)=log2x+x-k(k∈N)在区间(2,3)上只有一个零点,则k=(  )
A.0B.2C.4D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若二次函数y=ax2(a>0)的图象与不等式组$\left\{\begin{array}{l}{x-3≤0}\\{y-2≥0}\\{y≤x+1}\end{array}\right.$表示的平面区域无公共点,则实数a的取值范围为(  )
A.($\frac{2}{9}$,2)B.($\frac{2}{9}$,$\frac{4}{9}$)C.(0,$\frac{2}{9}$)∪($\frac{4}{9}$,+∞)D.(0,$\frac{2}{9}$)∪(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设函数f(x)=$a-\frac{2}{{2}^{x}+1}$.
(1)证明:不论a为何实数f(x)恒为增函数;
(2)当f(x)为奇函数时,确定实数a的值,并求函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=cos(2x-$\frac{π}{3}$)-$\sqrt{3}$sinxcosx-2sinx,x∈[$\frac{π}{6}$,π],求函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知集合A={x|x2-2x-3≥0},B={x|log2(x-1)<2},则(∁RA)∩B=(  )
A.(1,3)B.(-1,3)C.(3,5)D.(-1,5)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知数列{an}的通项公式为an=2n+1,令bn=$\frac{1}{n}({a_1}+{a_2}+…+{a_n})$,则数列{bn}的前10项和T10=75.

查看答案和解析>>

同步练习册答案