精英家教网 > 高中数学 > 题目详情
14.若幂函数y=mxα(m,α∈R)的图象经过点$(8,\frac{1}{4})$,则α=-$\frac{2}{3}$.

分析 根据幂函数的定义与性质,列出方程组求出m,α的值.

解答 解:幂函数y=mxα(m,α∈R)的图象经过点$(8,\frac{1}{4})$,
则$\left\{\begin{array}{l}{m=1}\\{{8}^{α}=\frac{1}{4}}\end{array}\right.$,
∴2=2-2
即3α=-2,
解得α=-$\frac{2}{3}$.
故答案为:-$\frac{2}{3}$.

点评 本题考查了幂函数的定义与性质的应用问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.设a=4${\;}^{{{log}_3}2}}$,b=4${\;}^{{{log}_9}6}}$,c=($\frac{1}{2}$)${\;}^{-\sqrt{5}}}$,则(  )
A.a>b>cB.a>c>bC.b>c>aD.c>b>a

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.定义在R上的奇函数f(x)满足x>0时,f(x)=x-$\sqrt{x}$+1.
(1)求函数f(x)的解析式; 
(2)求函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.下列说法正确的是(  )
A.“x<1”是“log2(x+1)<1”的充分不必要条件
B.命题“?x>0,2x>1”的否定是“$?{x_0}≤0,{2^{x_0}}≤1$”
C.命题“若a≤b,则ac2≤bc2”的逆命题为真命题
D.命题“若a+b≠5,则a≠2或b≠3”为真命题.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.某班2名同学准备报名参加浙江大学、复旦大学和上海交大的自主招生考试,要求每人最多选报两所学校,则不同的报名结果有(  )
A.33种B.24种C.27种D.36种

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=(2-a)lnx+$\frac{1}{x}$+2ax(a≤0).
(Ⅰ)当a=0时,求f(x)的极值;
(Ⅱ)当a<0时,讨论f(x)的单调性;
(Ⅲ)若对任意的a∈(-3,-2)及x1,x2∈[1,3],恒有(m+ln3)a-2ln3>|f(x1)-f(x2)|成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.方程log3(3x-1)•log3(3x-1-$\frac{1}{3}$)=2的解集为{log310,$lo{g}_{3}\frac{4}{3}$}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知函数$f(x)=\left\{\begin{array}{l}lnx,x>0\\-x,x<0\end{array}\right.$,若$f({\frac{1}{3}})=\frac{1}{3}f(a)$,则实数a的值为(  )
A.$\frac{1}{27}$B.$-\frac{1}{27}$C.ln27D.$ln\frac{1}{27}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=3x,f(a+2)=27,函数g(x)=λ•2ax-4x的定义域为[0,2].
(1)求a的值;
(2)若函数g(x)在[0,2]上单调递减,求λ的取值范围;
(3)若函数g(x)的最大值是1,求λ的值.

查看答案和解析>>

同步练习册答案