精英家教网 > 高中数学 > 题目详情

【题目】已知正项等比数列{an}满足:a7=a6+2a5 , 若存在两项am , an , 使得 =4a1 , 则 + 的最小值为(
A.
B.
C.
D.

【答案】B
【解析】解:设正项等比数列{an}的公比为q,且q>0,

由a7=a6+2a5得:a6q=a6+

化简得,q2﹣q﹣2=0,解得q=2或q=﹣1(舍去),

因为aman=16a12,所(a1qm1)(a1qn1)=16a12

则qm+n2=16,解得m+n=6,

+ = ×(m+n)×( + )= ×(17+ + )≥ ×(17+2 )=

当且仅当 = ,解得:m= ,n=

因为m n取整数,所以均值不等式等号条件取不到, +

验证可得,当m=1、n=5时,取最小值为

故答案选:B.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其大意为:“有一个人走了378里路,第一天健步行走,从第二天起因脚痛每天走的路程为前一天的一半,走了6天后到达目的地.”问此人第4天和第5天共走了(
A.60里
B.48里
C.36里
D.24里

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|x2+ax+b|在区间[0,c]内的最大值为M(a,b∈R,c>0位常数)且存在实数a,b,使得M取最小值2,则a+b+c=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数g(x)=a﹣x2 ≤x≤e,e为自然对数的底数)与h(x)=2lnx的图象上存在关于x轴对称的点,则实数a的取值范围是( )
A.[1, +2]
B.[1,e2﹣2]
C.[ +2,e2﹣2]
D.[e2﹣2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程
在直角坐标系xOy中,圆C的参数方程 (φ为参数),以O为极点,x轴的非负半轴为极轴建立极坐标系.
(1)求圆C的极坐标方程;
(2)直线l的极坐标方程是2ρsin(θ+ )=3 ,射线OM:θ= 与圆C的交点为O、P,与直线l的交点为Q,求线段PQ的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C: + =1(a>b>0)的离心率为 ,若圆x2+y2=a2被直线x﹣y﹣ =0截得的弦长为2
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)已知点A、B为动直线y=k(x﹣1),k≠0与椭圆C的两个交点,问:在x轴上是否存在定点M,使得 为定值?若存在,试求出点M的坐标和定值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱ABC﹣A1B1C1中,侧棱垂直于底面,AB⊥BC,E、F分别是A1B,AC1的中点.
(1)求证:平面AEF⊥平面AA1B1B;
(2)若A1A=2AB=2BC=4,求三棱锥F﹣ABC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设直线l过点P(0,3),和椭圆 交于A、B两点(A在B上方),试求 的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】三棱锥A﹣BCD的两条棱AB=CD=6,其余各棱长均为5,求三棱锥的内切球半径.

查看答案和解析>>

同步练习册答案