【题目】已知函数 为奇函数.
(1)求a的值;
(2)判断函数f(x)的单调性,并根据函数单调性的定义证明.
【答案】
(1)解:∵函数f(x)是奇函数,且f(x)的定义域为R;
∴ ;
∴a=﹣1;
(2)f(x)= ;
函数f(x)在定义域R上单调递增.
理由:设x1<x2,则:
;
∵x1<x2;
∴ ;
∴ ;
∴f(x1)<f(x2);
∴函数f(x)在定义域R上单调递增.
【解析】(1)f(x)的定义域为R,且f(x)为奇函数,所以一定有f(0)=0,代入可得a=-1,(2)根据函数单调性的定义进行判断,设x1<x2,对f(x1),f(x2)进行作差即可得出函数f(x)在定义域R上单调递增.
【考点精析】关于本题考查的奇偶性与单调性的综合,需要了解奇函数在关于原点对称的区间上有相同的单调性;偶函数在关于原点对称的区间上有相反的单调性才能得出正确答案.
科目:高中数学 来源: 题型:
【题目】经销商经销某种农产品,在一个销售季度内,每售出1t该产品获利润500元,未售出的产品,每1t亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如图所示.经销商为下一个销售季度购进了130t该农产品.以X(单位:t,100≤X≤150)表示下一个销售季度内的市场需求量,T(单位:元)表示下一个销售季度内经销该农产品的利润.
(Ⅰ)将T表示为X的函数;
(Ⅱ)根据直方图估计利润T不少于57000元的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=log2(|x﹣1|+|x+2|﹣a).
(Ⅰ)当a=7时,求函数f(x)的定义域;
(Ⅱ)若关于x的不等式f(x)≥3的解集是R,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数 ,且f(1)=1,f(﹣2)=4.
(1)求a、b的值;
(2)已知定点A(1,0),设点P(x,y)是函数y=f(x)(x<﹣1)图象上的任意一点,求|AP|的最小值,并求此时点P的坐标;
(3)当x∈[1,2]时,不等式 恒成立,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
(1)判断函数f(x)的奇偶性,并说明理由;
(2)证明:f(x)在(﹣1,+∞)上为增函数;
(3)证明:方程f(x)=0没有负数根.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=(a2﹣3a+3)ax是指数函数,
(1)求f(x)的表达式;
(2)判断F(x)=f(x)﹣f(﹣x)的奇偶性,并加以证明
(3)解不等式:loga(1﹣x)>loga(x+2)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com