精英家教网 > 高中数学 > 题目详情

【题目】已知函数 为奇函数.
(1)求a的值;
(2)判断函数f(x)的单调性,并根据函数单调性的定义证明.

【答案】
(1)解:∵函数f(x)是奇函数,且f(x)的定义域为R;

∴a=﹣1;


(2)f(x)=

函数f(x)在定义域R上单调递增.

理由:设x1<x2,则:

∵x1<x2

∴f(x1)<f(x2);

∴函数f(x)在定义域R上单调递增.


【解析】(1)f(x)的定义域为R,且f(x)为奇函数,所以一定有f(0)=0,代入可得a=-1,(2)根据函数单调性的定义进行判断,设x1<x2,对f(x1),f(x2)进行作差即可得出函数f(x)在定义域R上单调递增.
【考点精析】关于本题考查的奇偶性与单调性的综合,需要了解奇函数在关于原点对称的区间上有相同的单调性;偶函数在关于原点对称的区间上有相反的单调性才能得出正确答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=sinxsin x. (Ⅰ)求f(x)的最小正周期;
(Ⅱ)求f(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】经销商经销某种农产品,在一个销售季度内,每售出1t该产品获利润500元,未售出的产品,每1t亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如图所示.经销商为下一个销售季度购进了130t该农产品.以X(单位:t,100≤X≤150)表示下一个销售季度内的市场需求量,T(单位:元)表示下一个销售季度内经销该农产品的利润.

(Ⅰ)将T表示为X的函数;
(Ⅱ)根据直方图估计利润T不少于57000元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=(x2+ax+b)ex , 当b<1时,函数f(x)在(﹣∞,﹣2),(1,+∞)上均为增函数,则 的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=log2(|x﹣1|+|x+2|﹣a).
(Ⅰ)当a=7时,求函数f(x)的定义域;
(Ⅱ)若关于x的不等式f(x)≥3的解集是R,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)满足f(x+1)=﹣f(x﹣1),且当x∈(0,2)时,f(x)=2x , 则f(log280)=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 ,且f(1)=1,f(﹣2)=4.
(1)求a、b的值;
(2)已知定点A(1,0),设点P(x,y)是函数y=f(x)(x<﹣1)图象上的任意一点,求|AP|的最小值,并求此时点P的坐标;
(3)当x∈[1,2]时,不等式 恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数
(1)判断函数f(x)的奇偶性,并说明理由;
(2)证明:f(x)在(﹣1,+∞)上为增函数;
(3)证明:方程f(x)=0没有负数根.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=(a2﹣3a+3)ax是指数函数,
(1)求f(x)的表达式;
(2)判断F(x)=f(x)﹣f(﹣x)的奇偶性,并加以证明
(3)解不等式:loga(1﹣x)>loga(x+2)

查看答案和解析>>

同步练习册答案