精英家教网 > 高中数学 > 题目详情

【题目】如图,在三棱柱ABC-A1B1C1中,BB1⊥平面ABC,∠BAC=90°AC=AB=AA1EBC的中点.

1)求证:AEB1C

2)求异面直线AEA1C所成的角的大小;

3)若GC1C中点,求二面角C-AG-E的正切值.

【答案】(1)见解析;(2);(3)

【解析】

(1)由BB1⊥面ABC及线面垂直的性质可得AE⊥BB1,由AC=AB,E是BC的中点,及等腰三角形三线合一,可得AE⊥BC,结合线面垂直的判定定理可证得AE⊥面BB1C1C,进而由线面垂直的性质得到AE⊥B1C;

(2)取B1C1的中点E1,连A1E1,E1C,根据异面直线夹角定义可得,∠E1A1C是异面直线A与A1C所成的角,设AC=AB=AA1=2,解三角形E1A1C可得答案.

(3)连接AG,设P是AC的中点,过点P作PQ⊥AG于Q,连EP,EQ,则EP⊥AC,由直三棱锥的侧面与底面垂直,结合面面垂直的性质定理,可得EP⊥平面ACC1A1,进而由二面角的定义可得∠PQE是二面角C-AG-E的平面角.

证明:(1)因为BB1⊥面ABCAEABC,所以AEBB1

AB=ACEBC的中点得到AEBC

BCBB1=BAE⊥面BB1C1C

AEB1C

解:(2)取B1C1的中点E1,连A1E1E1C

AEA1E1

∴∠E1A1C是异面直线AEA1C所成的角.

AC=AB=AA1=2,则由∠BAC=90°,

可得A1E1=AE=A1C=2E1C1=EC=BC=

E1C==

∵在△E1A1C中,cos∠E1A1C==

所以异面直线AEA1C所成的角为

(3)连接AG,设PAC的中点,过点PPQAGQ,连EPEQ,则EPAC

又∵平面ABC⊥平面ACC1A1

EP⊥平面ACC1A1

PQAGEQAG

∴∠PQE是二面角C-AG-E的平面角.

EP=1,AP=1,PQ=,得tan∠PQE==

所以二面角C-AG-E的平面角正切值是

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】函数.

(1)求的单调区间;

(2)若,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的焦点与双曲线的焦点重合,过椭圆的右顶点任意作直线,交抛物线两点,且,其中为坐标原点.

(1)试求椭圆的方程;

(2)过椭圆的左焦点作互相垂直的两条直线,分别交椭圆于点,试求四边形的面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在上的函数且不恒为零,对满足,且上单调递增.

1)求的值,并判断函数的奇偶性;

2)求的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在上的函数满足以下三个条件:

①对任意实数,都有

在区间上为增函数.

1)判断函数的奇偶性,并加以证明;

2)求证:

3)解不等式

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在平面直角坐标系中,椭圆C离心率为,其短轴长为2.

(1)求椭圆C的标准方程;

(2)如图,A为椭圆C的左顶点,PQ为椭圆C上两动点,直线POAQE,直线QOAPD,直线OP与直线OQ的斜率分别为,且为非零实数),求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)当时,

①若曲线与直线相切,求的值;

②若曲线与直线有公共点,求的取值范围.

(2)当时,不等式对于任意正实数恒成立,当取得最大值时,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的右焦点为,坐标原点为.椭圆的动弦过右焦点且不垂直于坐标轴,的中点为,过且垂直于线段的直线交射线于点.

(I)求点的横坐标;

(II)当最大时,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,且曲线在点处的切线与轴垂直.

(I)求函数的单调区间;

(Ⅱ)若对任意(其中为自然对数的底数),都有恒成立,求的取值范围.

查看答案和解析>>

同步练习册答案