精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中,已知点,,坐标分别为为线段上一点,直线轴负半轴交于点,直线交于点

(1)当点坐标为时,求直线的方程;

(2)求面积之和的最小值.

【答案】(1);(2).

【解析】

(1)求出的直线方程后可得的坐标,再求出的直线方程和的直线方程后可得的坐标,从而得到直线的直线方程.

(2)直线的方程为,设,求出的直线方程后可得的坐标,从而可用表示,换元后利用基本不等式可求的最小值.

(1)当时,直线的方程为

所以,直线的方程为①,又直线的方程为②,

①②联立方程组得,所以直线的方程为.

(2)直线的方程为,设

直线的方程为,所以.

因为轴负半轴上,所以

=.

,则(当且仅当),

而当时,

的最小值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知二次函数fx)的最小值为1,且f0)=f2)=3

1)求fx)的解析式;

2)若fx)在区间[2aa+1]上不单调,求实数a的取值范围;

3)在区间[11]上,yfx)的图象恒在y2x+2m+1的图象上方,试确定实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从某居民区随机抽取个家庭,获得第个家庭的月收入 (单位:千元)与月储蓄 (单位:千元)的数据资料,算得,,,.

(1)求家庭的月储蓄对月收入的线性回归方程;

(2)判断变量之间是正相关还是负相关;

(3)若该居民区某家庭月收入为千元,预测该家庭的月储蓄.其中,为样本平均值,线性回归方程也可写为,附:线性回归方程中, ,.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分12分)假设关于某设备使用年限x(年)和所支出的维修费用y(万元)有如下统计资料:


2

3

4

5

6


2.2

3.8

5.5

6.5

7.0

若由资料知,yx呈线性相关关系,试求:

1)回归直线方程;

2)估计使用年限为10年时,维修费用约是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知一次函数上的减函数,,且 f [ f(x)]=16x-3.

(1)求

(2)若在(-2,3)单调递增,求实数的取值范围;

(3)当时,有最大值1,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知单位圆O上的两点A,B及单位圆所在平面上的一点P,满足 =m + (m为常数).

(1)如图,若四边形OABP为平行四边形,求m的值;
(2)若m=2,求| |的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《九章算术》是我国古代内容极为丰富的数学名著,书中提到了一种名为“刍甍”的五面体(如图):面ABCD为矩形,棱EF∥AB.若此几何体中,AB=4,EF=2,△ADE和△BCF都是边长为2的等边三角形,则此几何体的表面积为(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的前项和满足,数列的前项和满足.

(1)求数列的通项公式;

(2)设,求数列的前项和;

(3)数列中是否存在不同的三项,使这三项恰好构成等差数列?若存在,求出的关系;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分10分)选修44,坐标系与参数方程

已知曲线,直线为参数).

I)写出曲线的参数方程,直线的普通方程;

II)过曲线上任意一点作与夹角为的直线,交于点的最大值与最小值.

查看答案和解析>>

同步练习册答案