精英家教网 > 高中数学 > 题目详情
16.在△ABC中,三个内角A、B、C所对的边分别为a、b、c,若内角A、B、C依次成等差数列,且不等式-x2+6x-8>0的解集为{x|a<x<c},则S△ABC等于(  )
A.$\sqrt{3}$B.2$\sqrt{3}$C.3$\sqrt{3}$D.4$\sqrt{3}$

分析 利用等差数列的性质求出B,由不等式-x2+6x-8>0的解集求出a,c,再由正弦定理求出△ABC的面积.

解答 解:△ABC中,内角A、B、C依次成等差数列,
∴B=60°,
∵不等式-x2+6x-8>0的解集为{x|2<x<4},
∴a=2,c=4;
∴△ABC的面积为S△ABC=$\frac{1}{2}$acsinB=$\frac{1}{2}$×2×4×sin60°=2$\sqrt{3}$.
故选:B.

点评 本题考查了等差数列的性质与解一元二次不等式以及利用正弦定理的推论求三角形的面积的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.函数f(x)=a+$\frac{2}{{2}^{x}-1}$是奇函数,则a的值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.函数y=ax3+1的图象与直线y=x相切,则a=(  )
A.$\frac{1}{8}$B.$\frac{1}{4}$C.$\frac{16}{27}$D.$\frac{4}{27}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知$f(x)=\left\{{\begin{array}{l}{{x^2}-4,x>0}\\{0,x=0}\\{1-x,x<0}\end{array}}\right.$.
(1)求f(f(-1)),f(f(1));   
(2)画出f(x)的图象;
(3)若f(x)=a,问a为何值时,方程没有根?有一个根?两个根?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.(文科)已知函数f(x)=$\left\{\begin{array}{l}-x+2,\;\;\;\;x≥1\\{2^{x-1}},\;\;\;\;\;\;\;x<1\end{array}\right.$,若关于x的方程f(x)=k有两个不同的实根,则实数k的取值范围是(0,1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设角α的终边经过点P(-3a,4a),(a>0),则sinα+2cosα等于(  )
A.$\frac{1}{5}$B.-$\frac{1}{5}$C.-$\frac{2}{5}$D.$\frac{2}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设集中A={2,4,6},B={1,9,25,49,81,100},下面的对应关系f能构成A到B的映射的是(  )
A.f:x→(2x-1)2B.f:x→(2x-3)C.f:x→(2x-1)D.f:x→(2x-3)2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.如图,在平行四边形ABCD中,∠ABD=90°,2AB2+BD2=4,若将其沿BD折成直二面角A-BD-C,则三棱锥A-BCD的外接球的表面积为(  )
A.B.C.12πD.16π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设等比数列{an}的前n项和为Sn,且${S_n}={3^n}+k$
(Ⅰ)求k的值及数列{an}的通项公式;
(Ⅱ)在an与an+1之间插入n个数,使这n+2个数组成公差为dn的等差数列,求数列$\{\frac{1}{d_n}\}$的前n项和Tn,并求使$\frac{8}{5}{T_n}+\frac{n}{{5×{3^{n-1}}}}≤\frac{40}{27}$成立的正整数n的最大值.

查看答案和解析>>

同步练习册答案