精英家教网 > 高中数学 > 题目详情
15.某同学在一次研究性学习中发现,以下三个式子的值都等于同一个常数.
①sin210°+cos220°-sin10°cos20°;
②sin215°+cos215°-sin15°cos15°;
③sin216°+cos214°-sin16°cos14°;
请将该同学的发现推广为一般规律的等式为${sin^2}α+{cos^2}(30°-α)-sinαcos(30°-α)=\frac{3}{4}$.

分析 3个等式有相同的特点,两个角的和30°,而且是正弦的平方和余弦的平方减去正弦和余弦之积,结果值为$\frac{3}{4}$.

解答 解:由(2)得常数为$\frac{3}{4}$,
所以由归纳推理可得推广为一般规律的等式:${sin^2}α+{cos^2}(30°-α)-sinαcos(30°-α)=\frac{3}{4}$.
故答案为::${sin^2}α+{cos^2}(30°-α)-sinαcos(30°-α)=\frac{3}{4}$.

点评 本题主要考查归纳推理的应用,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.观察(x2)′=2x,(x4)′=4x3,(cosx)′=-sinx,由此可归纳出:若函数f(x)是定义在R上的偶函数,则f′(x)(  )
A.为偶函数B.为奇函数
C.既为奇函数又为偶函数D.为非奇非偶函数

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.在直角坐标系中,已知曲线C:$\left\{\begin{array}{l}{x=1+cosθ}\\{y=sinθ}\end{array}\right.$(θ为参数),若以原点为极点,x轴的正半轴为极轴建立极坐标系,则曲线C的极坐标方程为ρ=2cosθ.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,点C是圆O直径BE的延长线上一点,AC是圆O的切线,A为切点,∠ACB的平分线CD分别与AB、AE交于D、F.
(1)求证:AD=AF;
(2)若AB=AC,求$\frac{S{\;}_{△ACE}}{{S}_{△BCA}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.观察下列各式:
1+$\frac{1}{1+2}$=$\frac{4}{3}$,1+$\frac{1}{1+2}$+$\frac{1}{1+2+3}$=$\frac{3}{2}$,1+$\frac{1}{1+2}$+$\frac{1}{1+2+3}$+$\frac{1}{1+2+3+4}$=$\frac{8}{5}$,…,则1+$\frac{1}{1+2}$+$\frac{1}{1+2+3}$+…+$\frac{1}{1+2+…+9}$等于(  )
A.$\frac{17}{9}$B.$\frac{19}{10}$C.$\frac{9}{5}$D.$\frac{11}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,三棱柱ABC-A1B1C1的所有棱长都为1,且侧棱与底面垂直,M是BC的中点.
(1)求证:A1C∥平面AB1M;
(2)求直线BB1与平面AB1M所成角的正弦值;
(3)求点C到平面AB1M的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若函数f(x)的导函数为f′(x),且满足f(x)=2xf′(1)+lnx,则f′(1)等于(  )
A.-1B.-eC.1D.-4e

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知x∈(1,+∞),函数f(x)=ex+2ax(a∈R),函数g(x)=|$\frac{e}{x}$-lnx|+lnx,其中e为自然对数的底数
(1)求函数f(x)的单调区间
(2)证明:当a∈(2,+∞)时,f′(x-1)>g(x)+a.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在平面直角坐标系xOy中,直线l的方程为x-y+2=0,以原点O为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=2$\sqrt{2}$cos(θ+$\frac{π}{4}$).
(Ⅰ)求曲线C的直角坐标方程;
(Ⅱ)判断直线l与曲线C的位置关系.

查看答案和解析>>

同步练习册答案