【题目】下面是几何体的三视图及直观图.
(1)试判断线段上是否存在一点,使得平面,请说明理由;
(2)证明:.
【答案】(1)见解析;(2)见解析
【解析】分析:(1)取BC与EC的中点H,G,可证HG与AD平行且相等,从而得ADGH是平行四边形,因此有AH//DG,从而得线面平行;
(2)由题中条件证明垂直后计算出的长度,再用勾股定理逆定理证得.
详解: (1)存在线段的中点,使得平面,理由如下:
由三视图可知,,且平面,平面
取的中点,连接,
因为为中点,所以 ,且
因为四边形是直角梯形,,且,
所以,所以四边形为平行四边形,所以
因为平面,平面,所以平面.
(2)因为平面,所以,
所以,因为四边形为矩形,
所以,,所以平面,
又,故平面,平面,
所以,故,
因为四边形为直角梯形,,且,
所以,∴.
又,即,故.
科目:高中数学 来源: 题型:
【题目】如图,某污水处理厂要在一个矩形污水处理池的池底水平铺设污水净化管道(,是直角顶点)来处理污水,管道越长,污水净化效果越好.设计要求管道的接口是的中点,分别落在线段上.已知米,米,记.
(1)试将污水净化管道的长度表示为的函数,并写出定义域;
(2)若,求此时管道的长度;
(3)当取何值时,污水净化效果最好?并求出此时管道的长度.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】复利是一种计算利息的方法.即把前一期的利息和本金加在一起算作本金,再计算下一期的利息.某同学有压岁钱1000元,存入银行,年利率为2.25%;若放入微信零钱通或
者支付宝的余额宝,年利率可达4.01%.如果将这1000元选择合适方式存满5年,可以多获利息( )元.(参考数据:)
A. 176 B. 100 C. 77 D. 88
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某学校为调查高三年学生的身高情况,按随机抽样的方法抽取80名学生,得到男生身高情况的频率分布直方图(图(1))和女生身高情况的频率分布直方图(图(2)).已知图(1)中身高在170~175cm的男生人数有16人.
(Ⅰ)试问在抽取的学生中,男、女生各有多少人?
(Ⅱ)根据频率分布直方图,完成下列的2×2列联表,并判断能有多大(百分几)的把握认为“身高与性别有关”?
≥170cm | <170cm | 总计 | |
男生身高 | |||
女生身高 | |||
总计 |
(Ⅲ)在上述80名学生中,从身高在170~175cm之间的学生中按男、女性别分层抽样的方法,抽出5人,从这5人中选派3人当旗手,求3人中恰好有一名女生的概率.
参考公式:K2=
参考数据:
P(K2≥k0) | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设样本数据x1 , x2 , …,x10的均值和方差分别为1和4,若yi=xi+a(a为非零常数,i=1,2,…,10),则y1 , y2 , …,y10的均值和方差分别为( )
A.1+a,4
B.1+a,4+a
C.1,4
D.1,4+a
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,直线的参数方程为(为参数).在以原点为极点,轴正半轴为极轴的极坐标系中,曲线的极坐标方程为.
(1)求直线的极坐标方程和曲线的直角坐标方程;
(2)若直线与曲线交于两点,求.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数的定义域为,部分对应值如下表,的导函数的图象如图所示,给出关于的下列命题:
①函数在处取得极小值;
②函数在是减函数,在是增函数;
③当时,函数有4个零点;
④如果当时,的最大值是2,那么的最小值为0.
其中所有的正确命题是__________(写出正确命题的序号).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com