精英家教网 > 高中数学 > 题目详情
如图,⊙O是等腰三角形ABC的外接圆,AB=AC,延长BC到点D,使CD=AC,连接AD交⊙O于点E,连接BE与AC交于点F.
(1)判断BE是否平分∠ABC,并说明理由;
(2)若AE=6,BE=8,求EF的长.
考点:与圆有关的比例线段,弦切角
专题:立体几何
分析:(1)BE平分∠ABC.由已知中边的相等,可得∠CAD=∠D,∠ABC=∠ACB,再利用同弧所对的圆周角相等,可得∠CAD=∠D=∠DBE,即有∠ABE+∠EBD=∠CAD+∠D,利用等量减等量差相等,可得∠EBD=∠D=∠ABE,故得证.
(2)由(1)中的所证条件∠ABE=∠FAE,再加上两个三角形的公共角,可证△BEA∽△AEF,利用比例线段可求EF.
解答: 解:(1)BE平分∠ABC,理由如下:
证明:∵AC=CD,
∴∠CAD=∠ADC,
∴∠ACB=∠CAD+∠ADC=2∠CAD…(2分)
又∵AB=AC,
∴∠ABC=∠ACB=2∠CAD,
∵∠CAD=∠EBC,
∴∠ABC=2∠EBC,
∴BE平分∠ABC;…(5分)
(2)连接EC,由(1)BE平分∠ABC,
∴E是弧AC的中点,
∴AE=EC=6,
又∠EBC=∠CAD=∠ADC,
∴ED=BD=8…(7分)
∵A、B、C、E四点共圆,
∴∠CED=∠ABC=∠ACB=∠AEF
∴△AEF∽△DEC
EF
EC
=
AE
ED

∴EF=
AE•EC
ED
=
9
2
…(10分)
点评:本题考查了圆周角定理,以及等腰三角形的性质,等边对等角,角平分线的判定,还有相似三角形的判定和性质等知识.本题解题的关键是正确读图,做题时最好自己作图以帮助理解题意.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知(
21
+5)sinθ-7cosθ=2-
21
,求sinθ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,多面体ABCDEF中,四边形ABCD是边长为2a的正方形,平面ADEF垂直于平面ABCD,且FA⊥AD,EF∥AD,EF=AF=a.
(1)求证:BD⊥CF;
(2)若P、Q分别为棱BF和DE的中点,求证:PQ∥平面ABCD;
(3)求多面体ABCDEF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合A={x|x2-1>0},B={x|x>1},则A∩B等于(  )
A、{x|x>1}
B、{x|x>0}
C、{x|x<-1}
D、{x|x>1或x<-1}

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCED中,PD⊥面ABCD,四边形ABCD为平行四边形,∠DAB=60°,AB=PA=2AD=4,
(1)若E为PC中点,求证:PA∥平面BDE
(2)求三棱锥D-BCP的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题中:
①经过空间任意一点都可作唯一一个平面与两条已知异面直线都平行;
②已知平面α,直线a和直线b,且a∩α=A,b⊥a,则b⊥α;
③有两个侧面都垂直于底面的四棱柱为直四棱柱;
④三棱锥中若有两组对棱互相垂直,则第三组对棱也一定互相垂直;
⑤一个二面角的两个半平面分别垂直于另一个二面角的两个半平面,则这两个角的平面角相等或互补,
其中正确命题的序号是
 
(请填上所有你认为正确命题的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足a1=1,an+an+1=an2+bn+1(a,b为常数,n∈N*
(1)如果{an}为等差数列,求a,b的值;
(2)如果{an}为单调递增数列,求a+b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知下列四下命题:
①命题“若x2>1,则x>1”的否命题为“若x2≤1,则x≤1”;
②命题“若α>β,则tanα>tanβ”的逆命题为真命题;
③命题“?x∈R,使得x2+x+1<0”的否定是“?x∈R都有x2+x+1≥0”;
④“x>1”是“x2+x-2>0”的充分不必要条件
其中正确命题的序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题中错误的是(  )
A、命题“若x2-5x+6=0,则x=2”的逆否命题是“若x≠2,则x2-5x+6≠0”
B、对命题p:?x∈R,使得x2+x+1<0,则¬p:?x∈R,则x2+x+1≥0
C、已知命题p和q,若p∨q为假命题,则命题p与q中必一真一假
D、若x、y∈R,则“x=y”是“xy≥(
x+y
2
2”成立的充要条件

查看答案和解析>>

同步练习册答案