精英家教网 > 高中数学 > 题目详情
10.在△ABC中,角A、B、C所对的边分别为a,b,c,且A=3C,c=6,(2a-c)cosB-bcosC=0,则△ABC的面积是$18\sqrt{3}$.

分析 已知等式利用正弦定理化简,整理后利用两角和与差的正弦函数公式及诱导公式变形,根据sinA不为0求出cosB的值,即可确定出B的度数,利用三角形内角和定理可求A,C,进而利用正弦定理可求a,利用三角形面积公式即可计算得解.

解答 解:已知等式(2a-c)cosB-bcosC=0,
利用正弦定理化简得:(2sinA-sinC)cosB=sinBcosC,
整理得:2sinAcosB=sinBcosC+cosBsinC=sin(B+C)=sinA,
∵sinA≠0,
∴cosB=$\frac{1}{2}$,则B=60°.
∵A=3C,c=6,可得:C=30°,A=90°,
∴a=$\frac{csinA}{sinC}$=$\frac{6×1}{\frac{1}{2}}$=12,
∴S△ABC=$\frac{1}{2}$acsinB=$\frac{1}{2}×12×6×\frac{\sqrt{3}}{2}$=$18\sqrt{3}$.
故答案为:$18\sqrt{3}$.

点评 此题考查了正弦定理,三角形内角和定理,三角形面积公式以及两角和与差的正弦函数公式,熟练掌握正弦定理是解本题的关键,考查了转化思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.已知函数$f(x)=\left\{\begin{array}{l}x+1,x≤0\\{log_2}x,x>0\end{array}\right.$,则函数y=f[f(x)]-1的图象与x轴的交点个数为(  )
A.3个B.2个C.0个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.把曲线的极坐标方程$ρ=\sqrt{2}sin({\frac{π}{4}-θ})$化为曲线的标准方程为${({x-\frac{1}{2}})^2}+{({y+\frac{1}{2}})^2}=\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知$\frac{1}{3}$≤a≤1,若函数f(x)=ax2-2x在[1,3]上的最大值为M(a),最小值为N(a)
(1)求N(a)的表达式;
(2)求M(a)的表达式并说出其最值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,已知正方体ABCD-A1B1C1D1的棱长为2,E、F分别是A1B1、CC1的中点,过D1、E、F作平面D1EGF交BB1于G.
(1)求证:EG∥D1F;
(2)求锐二面角C1-D1E-F的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知点($\sqrt{2}$,2)在幂函数f(x)的图象上,点(2,$\frac{1}{2}$)在幂函数g(x)的图象上.
(1)求出幂函数f(x)及g(x)的解析式;
(2)在同一坐标系中画出f(x)及g(x)的图象;
(3)观察(2)中的图象,写出当f(x)>g(x)时,x的取值范围(不用说明理由)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知cosα=-$\frac{4}{5}$($\frac{π}{2}$<α<π),则cos($\frac{π}{4}$+α)=(  )
A.-$\frac{7\sqrt{2}}{10}$B.-$\frac{\sqrt{2}}{10}$C.$\frac{\sqrt{2}}{10}$D.$\frac{7\sqrt{2}}{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知数列{an}的前n项和Sn满足Sn=2an-a1,且a1,a2+1,a3成等差数列.
(1)求数列{an}的通项公式;
(2)若bn=2n•an,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知曲线C1参数方程:$\left\{\begin{array}{l}{x=4t}\\{y=-1+3t}\end{array}\right.$(t为参数),以原点O为极点,以x轴正半轴为极轴建立极坐标系,曲线C2的极坐标方程为$ρ=2\sqrt{2}cos(θ+\frac{π}{4})$
(1)求曲线C1的普通方程和曲线C2的直角坐标方程;
(2)设曲线C1与C2公共点为A、B,点P(0,-1),求|PA|•|PB|的值.

查看答案和解析>>

同步练习册答案