精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱锥 中,底面 为直角梯形, ,且 平面 .

(1)求 与平面 所成角的正弦值;
(2)棱 上是否存在一点 满足 ?若存在,求 的长;若不存在,说明理由.

【答案】
(1)解:依题意,以 为坐标原点,分别以 轴建立空间直角坐标系 ,则 ,从而 .
设平面 的法向量为 ,则 ,且
,且 ,不妨取 ,则
所以平面 的一个法向量 ,
此时 ,所以 与平面 所成角的正弦值为

(2)解:设 ,则


化简得, ,该方程无解,
所以,棱 上不存在一点 满足
【解析】(1)根据题目中所给的条件的特点,以A为坐标原点建立空间直角坐标系,利用空间向量求直线与平面的夹角 , 即可求PB与平面PCD所成角的正弦值;
(2)先假设存在E符合条件,利用空间向量垂直的性质列出方程,问题转化为判定方程在[0,1]上是否有解即可得出结论.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数 .
(I)若 处的切线方程为 ,求 的值;
(II)若 上为增函数,求 得取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=ln(1+x)+mln(1-x)是偶函数,则( )
A.m=1,且f(x)在(0,1)上是增函数
B.m=1,且f(x)在(0,1)上是减函数
C.m=-1,且f(x)在(0,1)上是增函数
D.m=-1,且f(x)在(0,1)上是减函数

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某城市收集并整理了该市2017年1月份至10月份各月最低气温与最高气温(单位; )的数据,绘制了下面的折线图。

已知该市的各月最低气温与最高气温具有较好的线性关系,则根据该折线图,下列结论错误的是( )
A.最低气温与最高气温为正相关
B.10月的最高气温不低于5月的最高气温
C.月温差(最高气温减最低气温)的最大值出现在1月
D.最低气温低于 的月份有4个

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《九章算术》卷5《商功》记载一个问题“今有圆堡瑽,周四丈八尺,高一丈一尺 .问积几何?答曰:二千一百一十二尺.术曰:周自相乘,以高乘之,十二而一”.这里所说的圆堡瑽就是圆柱体,它的体积为“周自相乘,以高乘之,十二而一”. 就是说:圆堡瑽(圆柱体)的体积为 (底面圆的周长的平方 高),则由此可推得圆周率 的取值为( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 是抛物线 的焦点,点 在该抛物线上且位于 轴的两侧, (其中 为坐标原点),则 面积的最小值是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,用虚线表示的网格的小正方形边长为1,实线表示某几何体的三视图,则此几何体的外接球半径为( )

A.
B.
C.2
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,以原点为极点, 轴的正半轴为极轴,以相同的长度单位建立极坐标系,已知直线 的极坐标方程为 ,曲线 的极坐标方程为 .
(1)设 为参数,若 ,求直线 的参数方程;
(2)已知直线 与曲线 交于 ,设 ,且 ,求实数 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数 是定义域为 的偶函数,当 时, 若关于 的方程 有且仅有8个不同实数根,则实数 的取
值范围是

查看答案和解析>>

同步练习册答案