精英家教网 > 高中数学 > 题目详情
17.在等差数列{an}中,a2=4,前4项之和为18.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设${b_n}=n•{2^{{a_n}-2}}$,求数列{bn}的前n项和Tn

分析 (Ⅰ)利用已知条件列出方程组,求出首项与公差,即可求数列{an}的通项公式;
(Ⅱ)利用错位相减法求和,求解即可.

解答 (本小题满分12分)
解:(Ⅰ)设等差数列{an}的公差为d.
由已知得$\left\{\begin{array}{l}{a_1}+d=4\\ 4{a_1}+\frac{4×3}{2}d=18\end{array}\right.$…(2分)    
 解得$\left\{\begin{array}{l}{a_1}=3\\ d=1.\end{array}\right.$…(4分)
所以an=n+2.…(5分)
(Ⅱ)由(Ⅰ)可得bn=n•2n,…(6分)
∴Tn=b1+b2+b3+…+bn=1×2+2×22+3×23+…+n×2n①…(7分)
2Tn=1×22+2×23+3×24+…+(n-1)×2n+n×2n+1②…(8分)
①-②得:$-{T_n}=2+{2^2}+{2^3}+…+{2^n}-n×{2^{n+1}}$…(9分)
$-{T_n}=\frac{{2-{2^{n+1}}}}{1-2}-n×{2^{n+1}}=(1-n)×{2^{n+1}}-2$…(11分)
∴${T_n}=(n-1)×{2^{n+1}}+2$…(12分)

点评 本题考查数列求和,以及通项公式的求法,考查转化思想以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.已知函数$f(x)=lg\frac{1-x}{x+1}$
(1)求函数f(x)的定义域.
(2)若函数f(x)<0,求x得取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.对于给定的正整数数列{an},满足an+1=an+bn,其中bn是an的末位数字,下列关于数列{an}的说法正确的是(  )
A.如果a1是5的倍数,那么数列{an}与数列{2n}必有相同的项
B.如果a1不是5的倍数,那么数列{an}与数列{2n}必没有相同的项
C.如果a1不是5的倍数,那么数列{an}与数列{2n}只有有限个相同的项
D.如果a1不是5的倍数,那么数列{an}与数列{2n}有无穷多个相同的项.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在平面直角坐标系xOy中,已知直线$l:\left\{\begin{array}{l}x=\frac{3}{5}t\\ y=\frac{4}{5}t\end{array}\right.(t$为参数).现以坐标原点O为极点,以x轴非负半轴为极轴建立极坐标系,设圆C的极坐标方程为ρ=2cosθ,直线l与圆C交于A,B两点,求弦AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知函数$f(x)=3cos(ωx+\frac{π}{3})(ω>0)$和g(x)=2sin(2x+φ)+1的图象的对称轴完全相同,若$x∈[0,\frac{π}{3}]$,则f(x)的取值范围是(  )
A.[-3,3]B.$[-\frac{3}{2},3]$C.$[-3,\frac{{3\sqrt{3}}}{2}]$D.$[-3,\frac{3}{2}]$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在直角坐标系xOy中,曲线C1的参数方程为$\left\{\begin{array}{l}x=2\sqrt{5}cosα\\ y=2sinα\end{array}\right.$(α为参数).在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线${C_2}:{ρ^2}+4ρcosθ-2ρsinθ+4=0$.
(Ⅰ)写出曲线C1,C2的普通方程;
(Ⅱ)过曲线C1的左焦点且倾斜角为$\frac{π}{4}$的直线l交曲线C2于A,B两点,求|AB|.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知向量$\vec a=(3,-1)$,$\vec b=(1,x)$,且$\vec a⊥\vec b$,那么x的值是(  )
A.-3B.3C.$-\frac{1}{3}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.甲乙两名篮球运动员在4场比赛中的得分情况如图所示.v1,v2分别表示甲、乙二人的平均得分,s1,s2分别表示甲、乙二人得分的方差,那么v1和v2,s1和s2的大小关系是(  )
A.v1>v2,s1>s2B.v1<v2,s1>s2C.v1>v2,s1<s2D.v1<v2,s1<s2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知直线mx-y+m+2=0与圆C1:(x+1)2+(y-2)2=1相交于A,B两点,点P是圆C2:(x-3)2+y2=5上的动点,则△PAB面积的最大值是3$\sqrt{5}$.

查看答案和解析>>

同步练习册答案