精英家教网 > 高中数学 > 题目详情
11.“直线ax+3y+3=0和直线4x+(a+1)y+4=0平行”的充要条件是“a=(  )”
A.-4或3B.-$\frac{3}{7}$C.-3D.-4

分析 直线ax+3y+3=0和直线4x+(a+1)y+4=0平行?$\frac{a}{4}=\frac{3}{a+1}≠\frac{3}{4}$(a≠-1),解得a即可得出.

解答 解:直线ax+3y+3=0和直线4x+(a+1)y+4=0平行?$\frac{a}{4}=\frac{3}{a+1}≠\frac{3}{4}$(a≠-1),解得a=-4.
∴“直线ax+3y+3=0和直线4x+(a+1)y+4=0平行”的充要条件是“a=-4”.
故选:D.

点评 本题考查了直线平行的充要条件,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.如图,网格纸上小正方形的边长为1,粗实线及粗虚线画出的是某多面体的三视图,则该多面体外接球的表面积为(  )
A.B.$\frac{25}{2}$πC.12πD.$\frac{41}{4}$π

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.点C在线段AB上,且$\frac{AC}{CB}$=$\frac{5}{2}$,$\overrightarrow{AC}$=λ$\overrightarrow{AB}$,$\overrightarrow{BC}$=μ$\overrightarrow{AB}$,则λ+μ=$\frac{3}{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知数列{bn}是首项为-34,公差为1的等差数列,数列{an}满足an+1-an=2n(n∈N*),且a1=b37,则数列{$\frac{{b}_{n}}{{a}_{n}}$}的最大值为$\frac{1}{{2}^{36}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.函数f(x)=asin(πx+α)+bcos(πx+β)+1008(a,b,α,β均为非零实数),若f(2016)=16,则f(2017)=2000.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点为F1,F2,过F2作x轴的垂线与C相交于A,B两点,F1B与y轴交于点D,若$\overrightarrow{B{F}_{1}}$•$\overrightarrow{D{F}_{2}}$=0,则椭圆C的离心率等于$\sqrt{2}$-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.设由不等式$\left\{\begin{array}{l}{x+y-1≥0}&{\;}\\{x-y+1≥0}&{\;}\\{2x-y-2≤0}&{\;}\end{array}\right.$表示的平面区域为4,若直线kx-y+1=0(k∈R)平分A的面积,则实数k=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.如图所示的等腰直角三角形表示一个水平放置的平面图形的直观图,则这个平面图形的周长为(  )
A.2+$\sqrt{2}+\sqrt{6}$B.4+2$\sqrt{2}$+2$\sqrt{6}$C.2+2$\sqrt{2}$+2$\sqrt{3}$D.4+4$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.函数y=x2-x-lnx在区间[1,3]上的最小值等于0.

查看答案和解析>>

同步练习册答案