精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

1)求使方程存在两个实数解时,的取值范围;

2)设,函数.若对任意,总存在,使得,求实数的取值范围.

【答案】(1);(2).

【解析】

1)求出导函数,可得函数在区间上单调递增,在上单调递减,求得,利用可得结果;(2)由(1)知,设的值域为,因为对任意,总存在,使得,等价于.利用导数研究函数的单调性,求出的值域,根据包含关系列不等式求解即可,

1.

,得;令,得

所以函数在区间上单调递增,在上单调递减,

所以,又

要使方程存在两个实数解,则

解得.

2)由(1)知,设的值域为,因为对任意,总存在,使得,所以.

因为,所以

时,上恒成立,所以上单调递减,

,不可能满足.

时,由于

,即上单调递减,在上单调递增,

,又,要使,则必须有,化简得,解得,又,所以.

,即上单调递减,不可能满足.

综上,实数的取值范围为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知二次函数轴于两点(不重合),交轴于. 三点.下列说法正确的是( )

圆心在直线上;

的取值范围是

半径的最小值为

存在定点,使得圆恒过点.

A. ①②③B. ①③④C. ②③D. ①④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】团体购买公园门票,票价如下表:

购票人数

1~50

51~100

100以上

门票价格

13元/人

11元/人

9元/人

现某单位要组织其市场部和生产部的员工游览该公园,这两个部门人数分别为a和b,若按部门作为团体,选择两个不同的时间分别购票游览公园,则共需支付门票费为1290元;若两个部门合在一起作为一个团体,同一时间购票游览公园,则需支付门票费为990元,那么这两个部门的人数________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论函数的单调区间;

(2)证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学为了组建一支业余足球队,在高一年级随机选取50名男生测量身高,发现被测男生的身高全部在之间,将测量结果按如下方式分成六组:第1,第2,第6,如图是按上述分组得到的频率分布直方图,以频率近似概率.

1)若学校要从中选1名男生担任足球队长,求被选取的男生恰好在第5组或第6组的概率;

2)试估计该校高一年级全体男生身高的平均数(同一组中的数据用该组区间的中点值代表)与中位数;

3)现在从第5与第6组男生中选取两名同学担任守门员,求选取的两人中最多有1名男生来自第5组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆过点,且它的焦距是短轴长的.

1)求椭圆的方程.

2)若是椭圆上的两个动点(两点不关于轴对称),为坐标原点,的斜率分别为,问是否存在非零常数,使当时,的面积为定值?若存在,求的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

求函数的单调区间和极值;

,且是曲线上的任意两点,若对任意的,直线AB的斜率恒大于常数m,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆的左、右焦点分别为,下顶点为,椭圆的离心率是的面积是.

1)求椭圆的标准方程.

2)直线与椭圆交于两点(异于点),若直线与直线的斜率之和为1,证明:直线恒过定点,并求出该定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义:对于数列,如果存在常数,使对任意正整数,总有成立,那么我们称数列为“﹣摆动数列”.

①若,则数列_____﹣摆动数列”,_____﹣摆动数列”(回答是或不是);

②已知“﹣摆动数列”满足.则常数的值为_____.

查看答案和解析>>

同步练习册答案