动圆过定点,且与直线相切,其中.设圆心的轨迹的程为
(1)求;
(2)曲线上的一定点(0) ,方向向量的直线(不过P点)与曲线交与A、B两点,设直线PA、PB斜率分别为,,计算;
(3)曲线上的两个定点、,分别过点作倾斜角互补的两条直线分别与曲线交于两点,求证直线的斜率为定值;
(1)
(2)0(3)
【解析】
试题分析:(1)过点作直线的垂线,垂足为,由题意知:,即动点到定点与定直线的距离相等,由抛物线的定义知,点的轨迹为抛物线, 2分
其中为焦点,为准线,所以轨迹方 程为; 4分
(2)证明:设 A()、B()
过不过点P的直线方程为 5分
由得 6分
则, 7分
== 8分
==0. 10分
(3)设,
== 12分
设的直线方程为为与曲线的交点
由 ,的两根为
则 14分
同理,得 15分
代入(***)计算 17分
18分
考点:直线与抛物线的位置关系的运用
点评:解决的关键是能利用直线方程与抛物线方程建立方程组,结合韦达定理和斜率公式来的饿到求解,属于中档题。
科目:高中数学 来源: 题型:
已知动圆过定点,且与直线相切.
(1) 求动圆的圆心轨迹的方程;
(2) 是否存在直线,使过点,并与轨迹交于两点,
且满足?若存在,求出直线的方程;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
(05年山东卷理)(14分)
已知动圆过定点,且与直线相切,其中.
(I)求动圆圆心的轨迹的方程;
(II)设A、B是轨迹上异于原点的两个不同点,直线和的倾斜角分别为和,当变化且为定值时,证明直线恒过定点,并求出该定点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
已知动圆过定点,且与直线相切.
(1) 求动圆的圆心轨迹的方程;
(2) 是否存在直线,使过点,并与轨迹交于两点,
且满足?若存在,求出直线的方程;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
已知动圆过定点,且与直线相切.
(1) 求动圆的圆心轨迹的方程;
(2) 是否存在直线,使过点,并与轨迹交于两点,且满足
?若存在,求出直线的方程;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源:2012-2013学年广东省高三上学期期中考试文科数学试卷(解析版) 题型:解答题
(本小题满分14分)
已知动圆过定点,且与直线相切.
(1)求动圆的圆心轨迹的方程;
(2) 是否存在直线:,并与轨迹交于两点,且满足?若存在,求出直线的方程;若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com