精英家教网 > 高中数学 > 题目详情

【题目】已知函数

若函数处的切线平行于直线求实数a的值

)判断函数在区间上零点的个数;

)在()的条件下,若在上存在一点使得成立,求实数的取值范围.

【答案】12时, 无零点 时, 恰有一个零点 时, 有两个零点3

【解析】试题分析:(1)利用导数的几何意义,得 ;(2)函数的零点个数等价于两个函数的交点的个数,即的交点个数;(3)不等式能成立问题转化为函数的最值问题.

试题解析:

(Ⅰ),函数处的切线平行于直线

..

(Ⅱ)令

由此可知

上递减,在上递增,

时, 无零点

时, 恰有一个零点

时, 有两个零点

(Ⅲ)在上存在一点,使得成立等价于函数上的最小值小于零.

,

①当时,即时, 上单调递减,所以的最小值为,由可得,

②当时,即时, 上单调递增,所以的最小值为,由可得

③当时,即时,可得的最小值为此时, 不成立.

综上所述:可得所求的范围是

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设△ABC的三内角A、B、C的对边分别是a、b、c,且b(sinB﹣sinC)+(c﹣a)(sinA+sinC)=0 (Ⅰ)求角A的大小;
(Ⅱ)若a= ,sinC= sinB,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 是奇函数,f(x)=lg(10x+1)+bx是偶函数.
(1)求a和b的值.
(2)说明函数g(x)的单调性;若对任意的t∈[0,+∞),不等式g(t2﹣2t)+g(2t2﹣k)>0恒成立,求实数k的取值范围.
(3)设 ,若存在x∈(﹣∞,1],使不等式g(x)>h[lg(10a+9)]成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知:sin230°+sin290°+sin2150°=
sin25°+sin265°+sin2125°=
sin212°+sin272°+sin2132°=
通过观察上述两等式的规律,请你写出一般性的命题,并给予的证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求函数的单调区间;

(2)若关于的不等式恒成立,求整数的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ex﹣ax2﹣bx﹣1,其中a,b∈R,e=2.71828…为自然对数的底数.
(1)设g(x)是函数f(x)的导函数,求函数g(x)在区间[0,1]上的最小值;
(2)若f(1)=0,函数f(x)在区间(0,1)内有零点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,AB切⊙O于点B,直线AO交⊙O于D,E两点,BC⊥DE,垂足为C.

(1)证明:∠CBD=∠DBA;
(2)若AD=3DC,BC= ,求⊙O的直径.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示的多面体,它的正视图为直角三角形,侧视图为正三角形,俯视图为正方形(尺寸如图所示),E为VB的中点.
(1)求证:VD∥平面EAC;
(2)求二面角A﹣VB﹣D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=asinx﹣bcosx(a,b为常数,a≠0,x∈R)在x= 处取得最大值,则函数y=f(x+ )是(
A.奇函数且它的图象关于点(π,0)对称
B.偶函数且它的图象关于点( ,0)对称
C.奇函数且它的图象关于点( ,0)对称
D.偶函数且它的图象关于点(π,0)对称

查看答案和解析>>

同步练习册答案