精英家教网 > 高中数学 > 题目详情
1.对凯里一中高二(1)、高二(2)、高二(3)、高二(4)、高二(5)五个班级调查了解,统计出这五个班级课余参加书法兴趣小组并获校级奖的人数,得出如表:
班级高二(1)高二(2)高二(3)高二(4)高二(5)
班级代号x12345
获奖人数y54231
从表中看出,班级代号x与获奖人数y线性相关.
(1)求y关于x的线性回归方程$\widehaty=\widehatbx+\widehata$;
(2)从以上班级随机选出两个班级,求至少有一个班级获奖人数超过3人的概率.
(附:参考公式:$\widehatb=\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y)}}}{{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}}=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}}$,$\widehata=\overline y-\widehatb\overline x$).

分析 (1)通过线性回归方程,直接利用已知条件求出$\hat{a}$,$\hat{b}$,推出线性回归方程.
(2)记“从以上班级随机选出两个班级,求至少有一个班级获奖人数超过3人”为事件A,列出基本事件,利用古典概型求出概率即可.

解答 解:(1)由已知得n=5,$\overline x=\overline y=\frac{1+2+3+4+5}{5}=3$,
$\sum_{i=1}^5{{x_i}{y_i}=36}$,$n\overline x\overline y=45$,$\sum_{i=1}^5{x_i^2}=55$,$n{\overline x^2}=45$.
则$\widehatb=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}}=\frac{36-45}{55-45}=-\frac{9}{10}$.…(4分)
则$\widehata=\overline y-\widehatb\overline x=\frac{57}{10}$.
故y关于x的线性回归方程$\widehaty=-\frac{11}{10}x+\frac{57}{10}$.…(6分)
(2)从以上班级随机选出两个班级,基本事件共有
(1,2),(1,3),(1,4),(1,5),(2,3),
(2,4),(2,5),(3,4),(3,5),(4,5)共10个,
而获奖人数超过3人的有1班和2班,
则至少有一个班级获奖人数超过3人的基本事件为
(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)共7个,
由古典概型知至少有一个班级获奖人数超过3人的概率$p=\frac{7}{10}$.…(12分)

点评 本题考查线性回归方程的求法,古典概型的求解,考查分析问题解决问题的能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.在直角坐标系xOy中,直线l:$\left\{\begin{array}{l}{x=t}\\{y=\sqrt{5}+2t}\end{array}\right.$(t为参数),以原点O为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ2cos2θ+4=0.
(Ⅰ)写出曲线C的直角坐标方程;
(Ⅱ)已知点A(0,$\sqrt{5}$),直线l与曲线C相交于点M、N,求$\frac{1}{|AM|}$+$\frac{1}{|AN|}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知圆心为(2,0)的圆C与直线y=x相切,求切点到原点的距离(  )
A.1B.$\sqrt{2}$C.2D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的离心率e=$\frac{{\sqrt{6}}}{6}$,焦距为2,O是坐标原点.
(1)求椭圆C的标准方程;
(2)直线y=x+m交椭圆C于A、B两点,若以AB为直径的圆经过O点,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.在各项为正实数的等差数列{an}中,其前2016项的和S2016=1008,则$\frac{1}{{{a_{1001}}}}+\frac{9}{{{a_{1016}}}}$的最小值为(  )
A.12B.16C.$\frac{1}{84}$D.$\frac{2}{251}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.点M(x1,y1)在函数y=-2x+8的图象上,当x1∈[2,5]时,则$\frac{{{y_1}+1}}{{{x_1}+1}}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知A(5,-1),B(m,m),C(2,3)三点.
(1)若AB⊥BC,求m的值;
(2)求线段AC的中垂线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知向量$\overrightarrow{a}$=(x,$\sqrt{3}$),$\overrightarrow{b}$=(x,-$\sqrt{3}$),若(2$\overrightarrow{a}$+$\overrightarrow{b}$)⊥$\overrightarrow{b}$,则|$\overrightarrow{a}$|=(  )
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若函数f(x)=|x2-k|的图象与函数g(x)=x-3的图象至多一个公共点,则实数k的取值范围是(  )
A.(-∞,3]B.[9,+∞)C.(-∞,9]D.(-∞,9)

查看答案和解析>>

同步练习册答案