精英家教网 > 高中数学 > 题目详情

如图,椭圆Q:(a>b>0)的右焦点F(c,0),过点F的一动直线m绕点F转动,并且交椭圆于A、B两点,P是线段AB的中点

(1)       求点P的轨迹H的方程

(2)       在Q的方程中,令a2=1+cosq+sinq,b2=sinq(0<q£ ),确定q的值,使原点距椭圆的右准线l最远,此时,设l与x轴交点为D,当直线m绕点F转动到什么位置时,三角形ABD的面积最大?

解析:如图,(1)设椭圆Q:(a>b>0)

上的点A(x1,y1)、B(x2,y2),又设P点坐标为P(x,y),则

1°当AB不垂直x轴时,x1¹x2

由(1)-(2)得

b2(x1-x2)2x+a2(y1-y2)2y=0

     

\b2x2+a2y2-b2cx=0…………(3)

2°当AB垂直于x轴时,点P即为点F,满足方程(3)

故所求点P的轨迹方程为:b2x2+a2y2-b2cx=0

(2)因为,椭圆  Q右准线l方程是x=,原点距l

的距离为,由于c2=a2-b2,a2=1+cosq+sinq,b2=sinq(0<q£

=2sin(

当q=时,上式达到最大值。此时a2=2,b2=1,c=1,D(2,0),|DF|=1

设椭圆Q:上的点 A(x1,y1)、B(x2,y2),三角形ABD的面积

S=|y1|+|y2|=|y1-y2|

设直线m的方程为x=ky+1,代入中,得(2+k2)y2+2ky-1=0

由韦达定理得y1+y2,y1y2

4S2=(y1-y22=(y1+y22-4 y1y2

令t=k2+1³1,得4S2,当t=1,k=0时取等号。

因此,当直线m绕点F转到垂直x轴位置时,三角形ABD的面积最大。

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(06年江西卷理)(12分)

如图,椭圆Q:(a>b>0)的右焦点F(c,0),过点F的一动直线m绕点F转动,并且交椭圆于A、B两点,P是线段AB的中点

(1)求点P的轨迹H的方程

(2)在Q的方程中,令a2=1+cosq+sinq,b2=sinq(0<q£ ),确定q的值,使原点距椭圆的右准线l最远,此时,设l与x轴交点为D,当直线m绕点F转动到什么位置时,三角形ABD的面积最大?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,椭圆Q:数学公式(a>b>0)的右焦点F(c,0),过点F的一动直线m绕点F转动,并且交椭圆于A、B两点,P是线段AB的中点.
(1)求点P的轨迹H的方程.
(2)在Q的方程中,令a2=1+cosq+sinq,b2=sinq(0<q≤数学公式),确定q的值,使原点距椭圆的右准线l最远,此时,设l与x轴交点为D,当直线m绕点F转动到什么位置时,三角形ABD的面积最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

21.

    如图,椭圆Q:=1(a>b>0)的右焦点为F(c,0),过点F的一动直线m绕点F转动,并且交椭圆于A、B两点,P为线段AB的中点.

    (1)求点P的轨迹H的方程;

    (2)若在Q的方程中,令a2=1+cosθ+sinθ,b2=sinθ(0<θ≤Equation.3).

    设轨迹H的最高点和最低点分别为M和N.当θ为何值时,△MNF为—个正三角形?

查看答案和解析>>

科目:高中数学 来源:2006年江西省高考数学试卷(理科)(解析版) 题型:解答题

如图,椭圆Q:(a>b>0)的右焦点F(c,0),过点F的一动直线m绕点F转动,并且交椭圆于A、B两点,P是线段AB的中点.
(1)求点P的轨迹H的方程.
(2)在Q的方程中,令a2=1+cosq+sinq,b2=sinq(0<q≤),确定q的值,使原点距椭圆的右准线l最远,此时,设l与x轴交点为D,当直线m绕点F转动到什么位置时,三角形ABD的面积最大?

查看答案和解析>>

同步练习册答案