科目:高中数学 来源:2010年北京市海淀区高三第二次模拟考试数学(理) 题型:解答题
(本小题满分14分)
已知函数的图象在
上连续不断,定义:
,
.
其中,表示函数
在
上的最小值,
表示函数
在
上的最大值.若存在最小正整数
,使得
对任意的
成立,则称函数
为
上的“
阶
收缩函数”.
(Ⅰ)若,
,试写出
,
的表达式;
(Ⅱ)已知函数,
,试判断
是否为
上的“
阶收缩函数”,如果是,求出对应的
;如果不是,请说明理由;
(Ⅲ)已知,函数
是
上的2阶收缩函数,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源:2013届重庆市高二下期中理科数学试卷(解析版) 题型:解答题
已知函数,函数
.
(1)时,求函数
的表达式;
(2)若a > 0,函数在
上的最小值是2,求a的值;
(3)在 (2) 的条件下,求直线与函数
的图象所围成图形的面积.
查看答案和解析>>
科目:高中数学 来源:2013届江西省高二下学期期中考试理科数学试卷(解析版) 题型:解答题
已知
(1)求函数在
上的最小值
(2)对一切的恒成立,求实数a的取值范围
(3)证明对一切,都有
成立
【解析】第一问中利用
当
时,
在
单调递减,在
单调递增
,当
,即
时,
,
第二问中,,则
设
,
则,
单调递增,
,
,
单调递减,
,因为对一切
,
恒成立,
第三问中问题等价于证明,
,
由(1)可知,
的最小值为
,当且仅当x=
时取得
设,
,则
,易得
。当且仅当x=1时取得.从而对一切
,都有
成立
解:(1)当
时,
在
单调递减,在
单调递增
,当
,即
时,
,
…………4分
(2),则
设
,
则,
单调递增,
,
,
单调递减,
,因为对一切
,
恒成立,
…………9分
(3)问题等价于证明,
,
由(1)可知,
的最小值为
,当且仅当x=
时取得
设,
,则
,易得
。当且仅当x=1时取得.从而对一切
,都有
成立
查看答案和解析>>
科目:高中数学 来源:2010-2011年江苏省盐城市高一下学期期中考试数学 题型:解答题
(本小题满分16分)
设函数,若不等式
的解集为
.
(1)求的值;
(2)若函数在
上的最小值为1,求实数
的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com