精英家教网 > 高中数学 > 题目详情
8.已知关于x的一元二次方程:9x2+6mx=n2-4(m,n∈R).
(1)若m∈{x|0≤x≤3,x∈N*},n∈{x|0≤x≤2,x∈Z},求方程有两个不相等实根的概率;
(2)若m∈{x|0≤x≤3,x∈R},n∈{x|0≤x≤2,x∈R},求方程有实数根的概率.

分析 (1)m∈{x|0≤x≤3,x∈N*}={1,2,3},n∈{x|0≤x≤2,x∈Z}={0,1,2},基本事件总数为9,△>0,m2+n2>4,求出满足条件的(m,n)的个数,即可求出方程有两个不相等实根的概率;
(2)m∈{x|0≤x≤3,x∈R},n∈{x|0≤x≤2,x∈R},对应区域的面积为6,△≥0,m2+n2≥4,对应区域的面积为6-$\frac{1}{4}π•4$=6-π,即可求出方程有实数根的概率.

解答 解:方程的△=36m2+36(n2-4).
(1)m∈{x|0≤x≤3,x∈N*}={1,2,3},n∈{x|0≤x≤2,x∈Z}={0,1,2},基本事件总数为9
△>0,m2+n2>4,满足条件的(m,n)为(1,2),(2,1),(2,2),(3,0),(3,1),(3,2),共6个,
∴方程有两个不相等实根的概率为$\frac{6}{9}$=$\frac{2}{3}$;
(2)m∈{x|0≤x≤3,x∈R},n∈{x|0≤x≤2,x∈R},对应区域的面积为6,
△≥0,m2+n2≥4,对应区域的面积为6-$\frac{1}{4}π•4$=6-π,
∴方程有实数根的概率为$\frac{6-π}{6}$=1-$\frac{π}{6}$.

点评 本题考查几何概型,考查方程根的研究,正确确定测度是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.下列函数中,是奇函数且在区间(-1,0)内单调递减的函数是(  )
A.y=2-xB.y=x-$\frac{1}{x}$C.y=-$\frac{1}{{x}^{2}}$D.y=-tanx

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知A={x|x≥k},B={x|x2-x-2>0},若“x∈A”是“x∈B”的充分不必要条件,则k的取值范围是(  )
A.k<-1B.k≤-1C.k>2D.k≥2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.若F1,F2是椭圆C:$\frac{{y}^{2}}{9}$+$\frac{{x}^{2}}{m}$=1(0<m<9)的两个焦点,圆上存在一点P,满足以椭圆短轴为直径的圆与线段PF1相切于该线段的中点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过点(0,$\sqrt{5}$)的直线l与椭圆C交于两点A、B,以AB为直径的圆经过点(0,-$\sqrt{5}$),求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.如图中程序执行后输出的结果是2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知圆C1:x2+y2+2x+8y-8=0与圆C2:x2+y2-4x-4y-2=0相交,则圆C1与圆C2的公共弦所在的直线的方程为x+2y-1=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,在正方体ABCD-A'B'C'D'中,E,F分别是AB',BC'的中点.
(Ⅰ)若M为BB'的中点,证明:平面EMF∥平面ABCD;
(II)在(1)的条件下,当正方体的棱长为2时,求三棱锥M-EBF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π)的部分图象(如图所示),则f(x)的解析式为$y=2sin(2x+\frac{π}{6})$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在各项均为正数的等比数列{an}中,若a4a5=3,则log3a1+log3a2+…+log3a8=(  )
A.1B.2C.4D.3

查看答案和解析>>

同步练习册答案