精英家教网 > 高中数学 > 题目详情

(1)解关于的不等式
(2)若关于的不等式有解,求实数的取值范围.

(1);(2).

解析试题分析:(1)解绝对值不等式的关键是去掉绝对号,如果有多个绝对号,可考虑零点分段的办法,该题只需分分类讨论;(2)构造函数,只需函数.
试题解析:(1)不等式等价于:,或,所以解集为
(2)记,则,∴实数的取值范围是.
考点:1、;绝对值不等式的解法;2、分段函数的最值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知,(1)当a=2时,求关于x的不等式的解集;(2)当a>0时,求关于x的不等式的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(1)已知x<,求函数y=4x-2+的最大值;
(2)已知x>0,y>0且=1,求x+y的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

解关于x的不等式(1-ax)2<1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

解不等式:x+|2x-1|<3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

,解关于的不等式

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)若不等式的解集为,求实数的值;
(2)在(Ⅰ)的条件下,若存在实数使成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

记关于的不等式的解集为,不等式的解集为
(1)若,求
(2)若,求正数的取值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,, 若恒成立,实数的最大值为.
(1)求实数.
(2)已知实数满足的最大值是,求的值.

查看答案和解析>>

同步练习册答案