精英家教网 > 高中数学 > 题目详情
已知数列{an}的前n项和Sn=-an-(
1
2
n-1+2(n∈N*).
(1)令bn=2nan,求证:数列{bn}是等差数列,并求数列{an}的通项公式.
(2)令cn=
n+1
n
anTn=c1+c2+…+cn
,试比较Tn
5n
2n+1
的大小,并予以证明.
分析:(1)由题意知S1=-a1-1+2=a1a1=
1
2
an=Sn-Sn-1=-an+an-1+(
1
2
)n-1
所以2nan=2n-1an-1+1,bn=bn-1+1,再由b1=2a1=1,知数列bn是首项和公差均为1的等差数列.于是bn=1+(n-1)•1=n=2nan,所以an=
n
2n

(2)cn=
n+1
n
an=(n+1)(
1
2
)n
Tn=2×
1
2
+3×(
1
2
)2++(n+1)×(
1
2
)n
,利用错位相减求和法可知Tn=3-
n+3
2n
Tn-
5n
2n+1
=3-
n+3
2n
-
5n
2n+1
=
(n+3)(2n-2n-1)
2n(2n+1)
,于是确定Tn
5n
2n+1
的大小关系等价于比较2n与2n+1的大小.猜想当n=1,2时,2n<2n+1,当n≥3时,2n>2n+1.然后用数学归纳法证明.
解答:解:(1)在Sn=-an-(
1
2
)n-1+2(n∈N*)
中,令n=1,可得S1=-a1-1+2=a1,即a1=
1
2

当n≥2时,Sn-1=-an-1-(
1
2
)n-2+2

所以an=Sn-Sn-1=-an+an-1+(
1
2
)n-1

所以2an=an-1+(
1
2
)n-1
,即2nan=2n-1an-1+1
因为bn=2nan,所以bn=bn-1+1,即当n≥2时,bn-bn-1=1
又b1=2a1=1,所以数列bn是首项和公差均为1的等差数列
于是bn=1+(n-1)•1=n=2nan,所以an=
n
2n

(2)由1)得cn=
n+1
n
an=(n+1)(
1
2
)n

所以Tn=2×
1
2
+3×(
1
2
)2+…+(n+1)×(
1
2
)n
1
2
Tn=2×(
1
2
)2+3×(
1
2
)3++n•(
1
2
)n+(n+1)•(
1
2
)n+1

由①-②得
1
2
Tn=
3
2
-
n+3
2n+1

所以Tn=3-
n+3
2n
Tn-
5n
2n+1
=3-
n+3
2n
-
5n
2n+1
=
(n+3)(2n-2n-1)
2n(2n+1)

于是确定Tn
5n
2n+1
的大小关系等价于比较2n与2n+1的大小.
猜想当n=1,2时,2n<2n+1,当n≥3时,2n>2n+1
下面用数学归纳法证明:
当n=3时,显然成立
假设当n=k(k≥3)时,2k>2k+1成立
则当n=k+1时,2k+1=2•2k>2(2k+1)=4k+2=2(k+1)+1+(2k-1)>2(k+1)+1
所以当n=k+1时,猜想也成立.
于是,当n≥3,n∈N*时,2n>2n+1成立
综上所述,当n=1,2时,Tn
5n
2n+1

当n≥3时,Tn
5n
2n+1
点评:本题考查当数列的综合运用,难度较大,解题时要认真审题,注意挖掘隐含条件,解题时要注意数学归纳法的解题过程.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

19、已知数列{an}的前n项和Sn=n2(n∈N*),数列{bn}为等比数列,且满足b1=a1,2b3=b4
(1)求数列{an},{bn}的通项公式;
(2)求数列{anbn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn=an2+bn(a、b∈R),且S25=100,则a12+a14等于(  )
A、16B、8C、4D、不确定

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn=n2+n+1,那么它的通项公式为an=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

13、已知数列{an}的前n项和为Sn=3n+a,若{an}为等比数列,则实数a的值为
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn满足Sn+1=kSn+2,又a1=2,a2=1.
(1)求k的值及通项公式an
(2)求Sn

查看答案和解析>>

同步练习册答案