精英家教网 > 高中数学 > 题目详情
5.已知抛物线关于x轴对称,顶点在坐标原点,并且经过点$M(2,-2\sqrt{2})$,斜率为1的直线l经过抛物线的焦点,且与抛物线相交于A,B两点.
(1)求抛物线的标准方程;
(2)求线段AB的长.

分析 (1)设抛物线的标准方程为y2=2px(p>0),过M(2,-2$\sqrt{2}$),利用抛物线的定义,求解即可.
(2)直线l斜率为1,且过焦点F(1,0),则l方程:y=x-1,联立方程组,设A(x1,y1),B(x2,y2),利用抛物线的性质,即可线段AB的长度.

解答 解:(1)设抛物线的标准方程为y2=2px(p>0),过M(2,-2$\sqrt{2}$),
得4p=8,即得p=2,
∴抛物线的标准方程为y2=4x
(2)直线l斜率为1,且过焦点F(1,0),则l方程:y=x-1
联立$\left\{\begin{array}{l}y=x-1\\{y}^{2}=4x\end{array}\right.$,
可得x2-6x+1=0,
设A(x1,y1),B(x2,y2),则x1+x2=6
∴|AB|=x1+x2+p=6+2=8即线段AB的长度.

点评 本题考查抛物线的简单性质的应用,抛物线方程的求法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知|$\overrightarrow{a}$|=3,|$\overrightarrow{b}$|=2,$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为60°,$\overrightarrow{c}$=$\overrightarrow{a}$+$\overrightarrow{b}$,$\overrightarrow{d}$=m$\overrightarrow{a}$-6$\overrightarrow{b}$(m∈R).若$\overrightarrow{c}$∥$\overrightarrow{d}$,|$\overrightarrow{c}$+$\overrightarrow{d}$|=5$\sqrt{19}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设$f(x)={x^3}-\frac{1}{2}{x^2}-2x+5$,当x∈[1,2]时,f(x)-m<0恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知函数f(x)的定义域为[-1,5],部分对应值如表,f(x)的导函数y=f′(x)的图象如图所示.下列四个命题:
x-1045
f(x)-1-2-2-1
①函数f(x)的极大值点为2;
②函数f(x)在[2,4]上是减函数;
③如果当x∈[m,5]时,f(x)的最小值是-2,那么m的最大值为4;
④函数y=f(x)-a(a∈R)的零点个数可能为0、1、2、3、4个.
其中正确命题的是①②③④.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数f(x)的部分图象如图,则f(x)的解析式可能为(  )
A.f(x)=xcosx-sinxB.f(x)=xsinxC.f(x)=xcosx+sinxD.f(x)=xcosx

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知△ABC的三个内角A、B、C的对边分别是a、b、c,且acosB+bcosA=3a,则$\frac{c}{a}$=3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.将一个长宽分别为2米和2k米(0<k<1)的铁皮的四角切去相同的正方形,然后折成一个无盖的长方体的盒子,记切去的正方形边长为x(0<x<k),
(1)若$k=\frac{5}{8}$,求这个长方体盒子的容积的最大时的x的值;
(2)若该长方体的盒子的对角线长有最小值,求k的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.下列命题:
①第一象限的角是锐角;
②正切函数在定义域内是增函数.
③arcsin$\frac{π}{3}$=$\frac{\sqrt{3}}{2}$;
④由f(x)=3sin2x的图象向右平移$\frac{π}{3}$个长度单位以得到f(x)=3sin(2x-$\frac{π}{3}$)的图象
正确的个数是0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.经市场调查,某商品在过去100天内销售量和价格均为时间t(天)的函数,
且日销售量近似地满足g(t)=-$\frac{1}{3}t$+$\frac{112}{3}$(1≤t≤100,t∈N).前40天的价格为f(t)=$\frac{1}{4}$t+22(1≤t≤40,t∈N),后60天价格为f(t)=-$\frac{1}{2}$t+52(41≤t≤100,t∈N),
(1)试求该商品的日销售额S(t)解析式;
(2)当t取何值时,日销售额S(t)取最大值和最小值并求出最大值和最小值.

查看答案和解析>>

同步练习册答案