精英家教网 > 高中数学 > 题目详情

【题目】某公司为评估两套促销活动方案(方案1运作费用为5/件;方案2的运作费用为2元件),在某地区部分营销网点进行试点(每个试点网点只采用一种促销活动方案),运作一年后,对比该地区上一年度的销售情况,制作相应的等高条形图如图所示.

1)请根据等高条形图提供的信息,为该公司今年选择一套较为有利的促销活动方案(不必说明理由);

2)已知该公司产品的成本为10/件(未包括促销活动运作费用),为制定本年度该地区的产品销售价格,统计上一年度的8组售价(单位:元/件,整数)和销量(单位:件)如下表所示:

售价

33

35

37

39

41

43

45

47

销量

840

800

740

695

640

580

525

460

①请根据下列数据计算相应的相关指数,并根据计算结果,选择合适的回归模型进行拟合;

②根据所选回归模型,分析售价定为多少时?利润可以达到最大.

52446.95

13142

122.89

124650

(附:相关指数

【答案】1)方案1;(2)①见解析,;②

【解析】

1)由等高条形图可知,年度平均销售额方案1的运作相关性更强于方案2.

2)①根据题给数据和公式,分别求出相关指数,比较即可得出结论;

②由(1)可知,采用方案1的运作效果比方案2的好,故年利润,利用导数求出单调性的方法,即可求出结论.

1)由等高条形图可知,年度平均售额与方案1的运作相关性强于方案2.

2)①由已知数据可知,回归模型对应的相关指数

回归模型对应的相关指数

回归模型对应的相关指数.

因为,所以采用回归模型进行拟合最为合适.

②由(1)可知,采用方案1的运作效果较方案2好,

故年利润

时,单调递增;

时,单调适减,

故当售价时,利润达到最大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】己知函数fx)对xR均有fx+2f(﹣x)=mx6,若fxlnx恒成立,则实数m的取值范围是_________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知.

1)当时,证明:

2)设直线是函数在点处的切线,若直线也与相切,求正整数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若函数f(x)在定义域内是增函数,求实数a的取值范围;

2)当a[1e)时,求方程的根的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某调查机构对全国互联网行业进行调查统计,得到整个互联网行业从业者年龄分布饼状图,90后从事互联网行业岗位分布条形图,则下列结论中不正确的是(

注:90后指1990年及以后出生,80后指1980-1989年之间出生,80前指1979年及以前出生.

A.互联网行业从业人员中90后占一半以上

B.互联网行业中从事技术岗位的人数超过总人数的

C.互联网行业中从事运营岗位的人数90后比80前多

D.互联网行业中从事技术岗位的人数90后比80后多

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论函数的单调性;

(2)已知处的切线与轴垂直,若方程有三个实数解),求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆)的左焦点为上一点,且轴垂直,分别为椭圆的右顶点和上顶点,且,且的面积是,其中是坐标原点.

1)求椭圆的方程.

2)若过点的直线互相垂直,且分别与椭圆交于点四点,求四边形的面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱柱中,底面ABCD是等腰梯形,,顶点在底面ABCD内的射影恰为点C.

1)求证:BC⊥平面ACD1

2)若直线DD1与底面ABCD所成的角为,求平面与平面ABCD所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,等腰梯形ABCD中,OBE中点,FBC中点.将沿BE折起到的位置,如图2.

1)证明:平面

2)若平面平面BCDE,求点F到平面的距离.

查看答案和解析>>

同步练习册答案