精英家教网 > 高中数学 > 题目详情
18.如图,已知平行六面体ABCD-A1B1C1D1,M为A1C1与B1D1的交点,化简下列向量表达式:
(1)$\overrightarrow{A{A}_{1}}$+$\overrightarrow{{A}_{1}{B}_{1}}$;
(2)$\frac{1}{2}$$\overrightarrow{{A}_{1}{B}_{1}}$+$\frac{1}{2}$$\overrightarrow{A{{\;}_{1}D}_{1}}$;
(3)$\overrightarrow{A{A}_{1}}$+$\frac{1}{2}$$\overrightarrow{{A}_{1}{B}_{1}}$+$\frac{1}{2}$$\overrightarrow{{A}_{1}{D}_{1}}$;
(4)$\overrightarrow{AB}$+$\overrightarrow{BC}$+$\overrightarrow{C{C}_{1}}$+$\overrightarrow{{C}_{1}{A}_{1}}$+$\overrightarrow{{A}_{1}A}$.

分析 类比平面向量的线性运算法则,结合平行六面体的性质,对下列各式进行化简即可.

解答 解:如图所示,平行六面体ABCD-A1B1C1D1中,
(1)$\overrightarrow{A{A}_{1}}$+$\overrightarrow{{A}_{1}{B}_{1}}$=$\overrightarrow{{AB}_{1}}$;
(2)$\frac{1}{2}$$\overrightarrow{{A}_{1}{B}_{1}}$+$\frac{1}{2}$$\overrightarrow{A{{\;}_{1}D}_{1}}$=$\frac{1}{2}$($\overrightarrow{{{A}_{1}B}_{1}}$+$\overrightarrow{{{A}_{1}D}_{1}}$)
=$\frac{1}{2}$$\overrightarrow{{{A}_{1}C}_{1}}$=$\overrightarrow{{A}_{1}M}$;
(3)$\overrightarrow{A{A}_{1}}$+$\frac{1}{2}$$\overrightarrow{{A}_{1}{B}_{1}}$+$\frac{1}{2}$$\overrightarrow{{A}_{1}{D}_{1}}$=$\overrightarrow{{AA}_{1}}$+$\frac{1}{2}$($\overrightarrow{{{A}_{1}B}_{1}}$+$\overrightarrow{{{A}_{1}D}_{1}}$)
=$\overrightarrow{{AA}_{1}}$+$\frac{1}{2}$$\overrightarrow{{{A}_{1}C}_{1}}$
=$\overrightarrow{{AA}_{1}}$+$\overrightarrow{{A}_{1}M}$
=$\overrightarrow{AM}$;
(4)$\overrightarrow{AB}$+$\overrightarrow{BC}$+$\overrightarrow{C{C}_{1}}$+$\overrightarrow{{C}_{1}{A}_{1}}$+$\overrightarrow{{A}_{1}A}$=$\overrightarrow{AC}$+$\overrightarrow{{CC}_{1}}$+$\overrightarrow{{{C}_{1}A}_{1}}$+$\overrightarrow{{A}_{1}A}$
=$\overrightarrow{{AC}_{1}}$+$\overrightarrow{{{C}_{1}A}_{1}}$+$\overrightarrow{{A}_{1}A}$
=$\overrightarrow{{AA}_{1}}$+$\overrightarrow{{A}_{1}A}$
=$\overrightarrow{0}$.

点评 本题考查了空间向量的线性表示与运算问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.已知函数f(x)=asinx+btanx+|x|,满足f(5)=7,则f(-5)=3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.与-457°角的终边相同的角的集合是(  )
A.{α|α=475°+k•360°,k∈Z}B.α|α=97°+k•360°,k∈Z}
C.α|α=263°+k•360°,k∈Z}D.α|α=-263°+k•360°,k∈Z}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.如图,正△ABC的中线AF与中位线DE相交于G,已知△A′ED是△AED绕DE旋转过程中的一个图形,下列命题中,错误的是(  )
A.动点A′在平面ABC上的射影在线段AF上
B.恒有DE⊥平面A′GF
C.三棱锥A′-FED的体积有最大值
D.异面直线A′E与BD不可能垂直

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图所示,在长方体体ABCD-A1B1C1D1中,O为AC的中点.
(1)化简:$\overrightarrow{{A}_{1}O}$-$\frac{1}{2}$$\overrightarrow{AB}$-$\frac{1}{2}$$\overrightarrow{AD}$;
(2)设E是棱DD1上的点,且$\overrightarrow{DE}$=$\frac{2}{3}$$\overrightarrow{D{D}_{1}}$,若$\overrightarrow{EO}$=x$\overrightarrow{AB}$+y$\overrightarrow{AD}$+z$\overrightarrow{A{A}_{1}}$,试求实数x,y,z的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知抛物线C:y2=2px(p>0)在x=$\sqrt{3}$处的切线斜率为$\frac{1}{2}$.
(1)求抛物线C的方程;
(2)已知点A、B在抛物线C上且位于x轴的两侧,$\overrightarrow{OA}$•$\overrightarrow{OB}$=6(其中O为坐标原点),求△ABO面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.($\frac{x}{2}$+$\frac{1}{x}$$+\sqrt{2}$)2的展开式中的常数项为3.(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知sin30°=$\frac{1}{2}$,sinx=-$\frac{1}{2}$,求出x的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知等差数列{an}的通项公式为an=3-2n,
求:(1)-37是这个数列的第几项?(2)前10项和S10

查看答案和解析>>

同步练习册答案