精英家教网 > 高中数学 > 题目详情
(Ⅰ)已知函数f(x)=x3-x,其图象记为曲线C,
(ⅰ)求函数f(x)的单调区间;
(ⅱ)证明:若对于任意非零实数x1,曲线C与其在点P1(x1,f(x1))处的切线交于另一点P2(x2,f(x2)),曲线C与其在点P2处的切线交于另一点P3(x3,f(x3)),线段P1P2,P2P3与曲线C所围成封闭图形的面积分别记为S1,S2,则为定值;
(Ⅱ)对于一般的三次函数g(x)=ax3+bx2+cx+d(a≠0),请给出类似于(Ⅰ)(ⅱ)的正确命题,并予以证明.

解:(Ⅰ)(ⅰ)由f(x)=x3-x得f′(x)=3x2-1=
当x∈时,f′(x)>0;
当x∈时,f′(x)<0;
因此,f(x)的单调递增区间为
单调递减区间为
(ⅱ)曲线C在点P1处的切线方程为y=(3x12-1)(x-x1)+x13-x1
即y=(3x12-1)x-2x13
得x3-x=(3x12-1)x-2x13
即(x-x1)2(x+2x1)=0,解得x=x1或x=-2x1,故x2=-2x1
进而有

用x2代替x1,重复上述计算过程,
可得x3=-2x2和S2=
又x2=-2x1≠0,
所以
因此有

(Ⅱ)记函数g(x)=ax3+bx2+cx+d(a≠0)的图象为曲线C′,
类似于(Ⅰ)(ⅱ)的正确命题为:若对于任意不等于的实数x1,曲线C′与其在点P1(x1,g(x1))处的切线交于另一点P2(x2,g(x2)),曲线C′与其在点P2处的切线交于另一点P3(x3,g(x3)),线段P1P2,P2P3与曲线C′所围成封闭图形的面积分别别为S1,S2,则为定值.
证明如下:因为平移变换不改变面积的大小,
故可将曲线y=g(x)的对称中心平移至坐标原点,
因而不妨设g(x)=ax3+hx,且x1≠0,
类似(Ⅰ)(ⅱ)的计算可得
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
3x+5,(x≤0)
x+5,(0<x≤1)
-2x+8,(x>1)

求(1)f(
1
π
),f[f(-1)]
的值;
(2)若f(a)>2,则a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=
(1-3a)x+10ax≤7
ax-7x>7.
是定义域上的递减函数,则实数a的取值范围是(  )
A、(
1
3
,1)
B、(
1
3
1
2
]
C、(
1
3
6
11
]
D、[
6
11
,1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
|x-1|-a
1-x2
是奇函数.则实数a的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2x-2-x2x+2-x

(1)求f(x)的定义域与值域;
(2)判断f(x)的奇偶性并证明;
(3)研究f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x-1x+a
+ln(x+1)
,其中实数a≠1.
(1)若a=2,求曲线y=f(x)在点(0,f(0))处的切线方程;
(2)若f(x)在x=1处取得极值,试讨论f(x)的单调性.

查看答案和解析>>

同步练习册答案