精英家教网 > 高中数学 > 题目详情

【题目】若x1满足2x+2x=5,x2满足2x+2log2(x﹣1)=5,x1+x2=(
A.
B.3
C.
D.4

【答案】C
【解析】解:由题意

2x2+2log2(x2﹣1)=5

所以

x1=log2(5﹣2x1 即2x1=2log2(5﹣2x1

令2x1=7﹣2t,代入上式得7﹣2t=2log2(2t﹣2)=2+2log2(t﹣1)

∴5﹣2t=2log2(t﹣1)与②式比较得t=x2

于是2x1=7﹣2x2

即x1+x2=

故选C

先由题中已知分别将x1、x2所满足的关系表达为,2x1=2log2(5﹣2x1)…系数配为2是为了与下式中的2x2对应

2x2+2log2(x2﹣1)=5,观察两个式子的特点,发现要将真数部分消掉求出x1+x2,只须将5﹣2x1化为2(t﹣1)的形式,则2x1=7﹣2t,t=x2

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设命题p:x2﹣4ax+3a2<0(其中a>0,x∈R),命题q:﹣x2+5x﹣6≥0,x∈R.
(1)若a=1,且p∧q为真,求实数x的取值范围;
(2)若¬p是¬q的充分不必要条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=1﹣ (a>0且a≠1)是定义在R上的奇函数. (Ⅰ)求a的值;
(Ⅱ)若关于x的方程|f(x)(2x+1)|=m有1个实根,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=loga(ax+1)+mx是偶函数.
(1)求m;
(2)当a>1时,若函数f(x)的图象与直线l:y=﹣mx+n无公共点,求n的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】与圆(x+1)2+y2=1和圆(x﹣5)2+y2=9都相切的圆的圆心轨迹是(
A.椭圆和双曲线
B.两条双曲线
C.双曲线的两支
D.双曲线的一支

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,抛物线关于x轴对称,它的顶点在坐标原点,点P(1,2),A(x1 , y1),B(x2 , y2)均在抛物线上.

(1)求该抛物线方程;
(2)若AB的中点坐标为(1,﹣1),求直线AB方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x),(x∈R)上任一点(x0 , y0)的切线方程为y﹣y0=(x0﹣2)(x02﹣1)(x﹣x0),那么函数f(x)的单调递减区间是(
A.[﹣1,+∞)
B.(﹣∞,2]
C.(﹣∞,﹣1)和(1,2)
D.[2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知过点P(m,n)的直线l与直线l0:x+2y+4=0垂直. (Ⅰ) 若 ,且点P在函数 的图象上,求直线l的一般式方程;
(Ⅱ) 若点P(m,n)在直线l0上,判断直线mx+(n﹣1)y+n+5=0是否经过定点?若是,求出该定点的坐标;否则,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=x2﹣ax+1,x∈[﹣1,2].
(1)若函数f(x)为单调函数,求a的取值范围;
(2)求函数f(x)的最小值.

查看答案和解析>>

同步练习册答案