精英家教网 > 高中数学 > 题目详情

【题目】以直角坐标系xOy的原点为极坐标系的极点,x轴的正半轴为极轴.已知曲线的极坐标方程为P上一动点,Q的轨迹为.

1)求曲线的极坐标方程,并化为直角坐标方程,

2)若点,直线l的参数方程为t为参数),直线l与曲线的交点为AB,当取最小值时,求直线l的普通方程.

【答案】12

【解析】

1)设点PQ的极坐标分别为),利用这一关系,可得Q的极坐标方程,再化成普通方程,即可得答案;

2)设点AB对应的参数分别为,则,将直线l的参数方程,(为参数),代入的直角坐标方程,利用韦达定理,从而将问题转化为三角函数的最值问题,求出此时的值,即可得答案.

1)设点PQ的极坐标分别为)

因为

所以曲线的极坐标方程为

两边同乘以ρ,得

所以的直角坐标方程为,即.

2)设点AB对应的参数分别为,则

将直线l的参数方程,(为参数),

代入的直角坐标方程中,整理得.由根与系数的关系得.

( 当且仅当时,等号成立)

∴当取得最小值时,直线l的普通方程为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】椭圆)的离心率是,点在短轴上,且

(1)球椭圆的方程;

(2)设为坐标原点,过点的动直线与椭圆交于两点。是否存在常数,使得为定值?若存在,求的值;若不存在,请说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,椭圆截直线所得的线段的长度为.

(Ⅰ)求椭圆的方程;

(Ⅱ)设直线与椭圆交于两点,点是椭圆上的点,是坐标原点,若,判定四边形的面积是否为定值?若为定值,求出定值;如果不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】各项均为非负整数的数列同时满足下列条件:

;② ;③的因数().

(Ⅰ)当时,写出数列的前五项;

(Ⅱ)若数列的前三项互不相等,且时, 为常数,求的值;

(Ⅲ)求证:对任意正整数,存在正整数,使得时, 为常数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左,右焦点分别为M是椭圆E上的一个动点,且的面积的最大值为.

1)求椭圆E的标准方程,

2)若,四边形ABCD内接于椭圆E,记直线ADBC的斜率分别为,求证:为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列的前项和为,对于任意的,都有.

1)求数列的首项及数列的递推关系式

2)若数列成等比数列,求常数的值,并求数列的通项公式;

3)数列中是否存在三项,它们组成等差数列?若存在,请求出一组适合条件的项;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,的参数方程为t为参数).以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为.

1)求的普通方程和曲线C的直角坐标方程;

2)求曲线C上的点到距离的最大值及该点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线,过点的直线两点,且满足以线段为直径的圆,圆心为,且过坐标原点.

1)求抛物线的方程;

2)若圆过点,求直线的方程和圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】国家统计局服务业调查中心和中国物流与采购联合会发布的201810月份至20199月份共12个月的中国制造业采购经理指数(PMI)如下图所示.则下列结论中错误的是(

A.12个月的PMI值不低于50%的频率为

B.12个月的PMI值的平均值低于50%

C.12个月的PMI值的众数为49.4%

D.12个月的PMI值的中位数为50.3%

查看答案和解析>>

同步练习册答案