精英家教网 > 高中数学 > 题目详情

【题目】已知曲线的参数方程为:为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为,直线的直角坐标方程为.

(l)求曲线和直线的极坐标方程;

(2)已知直线分别与曲线、曲线交异于极点的,若的极径分别为,求的值.

【答案】(1);(2)3.

【解析】

(1)曲线为圆:用公式代入,得极坐标方程,直线过原点,且倾斜角为,所以直线的极坐标方程为(2)曲线均为圆且都过极点O,所以代入,分别求得极径分别为,代入即求解.

(1)曲线的参数方程为为参数),普通方程为

极坐标方程为

∵直线的直角坐标方程为

故直线的极坐标方程为.

(2)曲线的极坐标方程为:

直线的极坐标方程为

代入的极坐标方程得

代入的极坐标方程得

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在三棱锥中, 是边长为的等边三角形, 分别是的中点.

(1)求证: 平面

(2)求证: 平面

(3)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为定义在上的奇函数,且当时,

(Ⅰ)求函数的解析式;

(Ⅱ)求函数在区间 上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在边长为a的菱形ABCD中,E,F分别是PAAB的中点.

1)求证: EF||平面PBC

2)求E到平面PBC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,摩天轮的半径为50m,圆心O距地面的高度为65m.已知摩天轮按逆时针方向匀速转动,每30min转动一圈.游客在摩天轮的舱位转到距离地面最近的位置进舱.

1)游客进入摩天轮的舱位,开始转动tmin后,他距离地面的高度为h,求h关于t的函数解析式;

2)已知在距离地面超过40m的高度,游客可以观看到游乐场全景,那么在摩天轮转动一圈的过程中,游客可以观看到游乐场全景的时间是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知多面体的底面是边长为的菱形, 底面 ,且

1证明:平面平面

2若直线与平面所成的角为求二面角

的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论函数的单调性;

(2)设,当时,对任意,存在,使,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设定义域为R的函数

(1)在平面直角坐标系中作出函数fx)的图象,并指出fx)的单调区间(不需证明);

2)若方程fx+5a0有两个解,求出a的取值范围(不需严格证明,简单说明即可);

3)设定义域为R的函数gx)为偶函数,且当x≥0时,gx)=fx),求gx)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的右焦点与抛物线的焦点重合,且椭圆的离心率为

(Ⅰ)求椭圆的方程;

(Ⅱ)设是椭圆的右顶点,过点作两条直线分别与椭圆交于另一点,若直线的斜率之积为,求证:直线恒过一个定点,并求出这个定点的坐标.

查看答案和解析>>

同步练习册答案