精英家教网 > 高中数学 > 题目详情
已知函数f(x)=ln(ax+1)+
1-x1+x
,x≥0
,其中a>0.
(Ⅰ)若f(x)在x=1处取得极值,求a的值;
(Ⅱ)求f(x)的单调区间;
(Ⅲ)若f(x)的最小值为1,求a的取值范围.
分析:(Ⅰ)对函数求导,令f′(1)=0,即可解出a值.
(Ⅱ)f′(x)>0,对a的取值范围进行讨论,分类解出单调区间.a≥2时,在区间(0,+∞)上是增函数,
(Ⅲ)由(2)的结论根据单调性确定出最小值,当a≥2时,由(II)知,f(x)的最小值为f(0)=1,恒成立;当0<a<2时,判断知最小值小于1,此时a无解.当0<a<2时,(x)的单调减区间为(0,
2-a
a
)
,单调增区间为(
2-a
a
,+∞
)
解答:解:(Ⅰ)f′(x)=
a
ax+1
-
2
(1+x)2
=
ax2+a-2
(ax+1)(1+x)2

∵f′(x)在x=1处取得极值,f′(1)=0
  即 a+a-2=0,解得  a=1
(Ⅱ)f′(x)=
ax2+a-2
(ax+1)(1+x)2

∵x≥0,a>0,
∴ax+1>0
①当a≥2时,在区间(0,+∞)上f′(x)>0.
∴f(x)的单调增区间为(0,+∞)
②当0<a<2时,由f′(x)>0解得x>
2-a
a

f′(x)<0解得x<
2-a
a

∴f(x)的单调减区间为(0,
2-a
a
)
,单调增区间为(
2-a
a
,+∞)

(Ⅲ)当a≥2时,由(II)知,f(x)的最小值为f(0)=1
当0<a<2时,由(II)②知,f(x)在x=
2-a
a
处取得最小值f(
2-a
a
)<f(0)=1

综上可知,若f(x)的最小值为1,则a的取值范围是[2,+∞)
点评:考查导数法求单调区间与求最值,本类题型是导数的主要运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
1
3
x3-
3
2
ax2-(a-3)x+b

(1)若函数f(x)在P(0,f(0))的切线方程为y=5x+1,求实数a,b的值:
(2)当a<3时,令g(x)=
f′(x)
x
,求y=g(x)在[l,2]上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
2
x2-alnx
的图象在点P(2,f(2))处的切线方程为l:y=x+b
(1)求出函数y=f(x)的表达式和切线l的方程;
(2)当x∈[
1
e
,e]
时(其中e=2.71828…),不等式f(x)<k恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lnx,g(x)=
12
x2+a
(a为常数),直线l与函数f(x)、g(x)的图象都相切,且l与函数f(x)的图象的切点的横坐标为1.
(1)求直线l的方程及a的值;
(2)当k>0时,试讨论方程f(1+x2)-g(x)=k的解的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
13
x3+x2+ax

(1)讨论f(x)的单调性;
(2)设f(x)有两个极值点x1,x2,若过两点(x1,f(x1)),(x2,f(x2))的直线l与x轴的交点在曲线y=f(x)上,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3-
32
ax2+b
,a,b为实数,x∈R,a∈R.
(1)当1<a<2时,若f(x)在区间[-1,1]上的最小值、最大值分别为-2、1,求a、b的值;
(2)在(1)的条件下,求经过点P(2,1)且与曲线f(x)相切的直线l的方程;
(3)试讨论函数F(x)=(f′(x)-2x2+4ax+a+1)•ex的极值点的个数.

查看答案和解析>>

同步练习册答案