精英家教网 > 高中数学 > 题目详情
2.下列命题中正确的是(  )
A.若p∨q为真命题,则p∧q为真命题.
B.“x=5”是“x2-4x-5=0”的必要不充分条件.
C.命题“?x∈R,x2+x-1<0”的否定为:“?x∈R,x2+x-1≥0”.
D.命题“已知A,B为一个三角形两内角,若A=B,则sinA=sinB”的否命题为真命题.

分析 由复合命题的真假判断判断A;求解一元二次方程结合充分必要条件的判定方法判断B;写出特称命题的否定判断C;在△ABC中,A=B?a=b?sinA=sinB判断D.

解答 解:若p∨q为真命题,说明p、q中至少有一个为真命题,但p∧q不一定为真命题,故A错误;
由x2-4x-5=0,得x=-1或x=5,则“x=5”是“x2-4x-5=0”的充分不必要条件,故B错误;
命题“?x∈R,x2+x-1<0”的否定为:“?x∈R,x2+x-1≥0”,故C错误;
若A=B,则sinA=sinB”的否命题为:若A≠B,则sinA≠sinB”,
∵在△ABC中,A=B?a=b?sinA=sinB,故D正确.
故选:D.

点评 本题考查命题的真假判断与应用,考查了复合命题的真假判断,考查充分必要条件的判定方法,考查特称命题的否定,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知f(x)=(logmx)2+2logmx-3(m>0,且m≠1).
(Ⅰ)当m=2时,解不等式f(x)<0;
(Ⅱ)f(x)<0在[2,4]恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知函数f(x)=$\left\{{\begin{array}{l}{{2^x},x≤0}\\{sinx,x>0}\end{array}}$,则$f(f(\frac{7π}{6}))$=(  )
A.$\sqrt{2}$B.$\frac{\sqrt{2}}{2}$C.$\frac{1}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.长方体ABCD-A1B1C1D1的8个顶点都在球O的表面上,E为AB的中点,CE=3,cos∠ACE=$\frac{5\sqrt{3}}{9}$,且四边形ABB1A1为正方形,则球O的直经为(  )
A.4B.6C.4或$\sqrt{51}$D.6或$\sqrt{53}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的离心率$e∈[{\sqrt{2},2}]$,则该双曲线的渐近线与实轴所成角的取值范围是$\frac{π}{4}$≤θ≤$\frac{π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设$\overrightarrow a=(-3,m),\overrightarrow b=(4,3)$,若$\overrightarrow a$与$\overrightarrow b$的夹角是钝角,则实数m的范围是(  )
A.m>4B.m<4C.m<4且$m≠\frac{9}{4}$D.m<4且$m≠-\frac{9}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.f(x)是偶函数,且在(-∞,0)上是增函数,则下列关系成立的是(  )
A.f(-2)<f(1)<f(3)B.f(1)<f(-2)<f(3)C.f(3)<f(-2)<f(1)D.f(-2)<f(3)<f(1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知函数$f(x)=\left\{\begin{array}{l}{log_5}({1-x}),(x<1)\\-{(x-2)^2}+2,(x≥1)\end{array}\right.$,则关于x的方程$f(x+\frac{1}{x}-2)=a$,当1<a<2的实根个数为6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=xlnx,g(x)=k(x-1)
(1)当k=e 时,求函数$h(x)=\frac{f(x)-g(x)}{x}$ 的极值;
(2)当k>0 时,若对任意两个不等的实数x1,x2∈[1,2],均有$|{\frac{{f({x_1})}}{x_1}-\frac{{f({x_2})}}{x_2}}|>|{\frac{{g({x_1})}}{x_1}-\frac{{g({x_2})}}{x_2}}|$,求实数k 的取值范围;
(3)是否存在实数k,使得函数$h(x)=\frac{f(x)-g(x)}{x}$ 在[1,e]上的最小值为$\frac{1}{2}$,若存在求出k 的值,若不存在,说明理由.

查看答案和解析>>

同步练习册答案