精英家教网 > 高中数学 > 题目详情
过点(0,1)且与直线y=2x垂直的直线方程为
 
考点:直线的一般式方程与直线的垂直关系
专题:直线与圆
分析:与直线y=2x垂直的直线方程的斜率k=-
1
2
,直线过点(0,1),由此能求出直线方程.
解答: 解:与直线y=2x垂直的直线方程的斜率k=-
1
2

∵直线过点(0,1),
∴所求直线的方程为y-1=-
1
2
x

整理,得x+2y-2=0.
故答案为:x+2y-2=0.
点评:本题考查直线方程的求法,是基础题,解题时要认真审题,注意直线间位置关系的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知全集U={x|x-2≥0或x-1≤0},A={x|x<1或x>3},B={x|x≤1或x>2},求A∩B,B∪A,∁UA∩∁UB.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={y|y=x2-2x},B={x||x|≤3},求A∩B,A∪B.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=2x2+k•|x-1|(k∈R)的最小值是f(1)=2,则实数k的取值范围为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
ax2+ax-1
的定义域是R,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A=(-5,1),B=(-∞,a),若A∩B=∅,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l的参数方程是
x=1+t
y=1-2t
(t为参数),曲线C的极坐标方程是ρ=2,若直线l与曲线C相交于A,B两点,则|AB|=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|x=4n+1,n∈Z},B={x|x=4n-3,n∈Z},C={x|x=8n+1,n∈Z},判断集合A,B与C间关系.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax3-3x2+1,若f(x)存在唯一的零点x°,且x°<0,则a的取值范围是
 

查看答案和解析>>

同步练习册答案