精英家教网 > 高中数学 > 题目详情

【题目】如图,四面体中,是正三角形,是直角三角形,.

1)证明:平面平面

2)若点中点,求二面角的正弦值.

【答案】1)证明见解析;(2.

【解析】

1)先证明出,可得出,可得出,然后取的中点,连接,并设,利用勾股定理证明出,由等腰三角形三线合一得出,利用直线与平面垂直的判定定理可证明出平面,再利用平面与平面垂直的判定定理可得出平面平面

2)以点为坐标原点,所在直线分别为轴建立空间直角坐标系,设,计算出平面的法向量,利用空间向量法求出二面角的余弦值,再利用同角三角函数的基本关系可得出答案.

1是等边三角形,,又

为直角三角形,所以

的中点,连接,则.

,则,又

,又平面

平面,因此,平面平面

2)由题设及(1)可知两两垂直,以点为坐标原点,建立如下图所示的空间直角坐标系,设,则的中点,则

.

设平面的一个法向量为,由,得

,令,则

所以,平面的一个法向量为.

同理可得,平面的一个法向量为

所以,二面角的正弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知抛物线,过其焦点的直线与抛物线相交于两点,满足.

1)求抛物线的方程;

2)已知点的坐标为,记直线的斜率分别为,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,已知以M为圆心的圆M:x2+y2-12x-14y+60=0及其上一点A(2,4).

(1)设圆N与x轴相切,与圆M外切,且圆心N在直线x=6上,求圆N的标准方程;

(2)设平行于OA的直线l与圆M相交于B,C两点,且BC=OA,

求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学拟在高一下学期开设游泳选修课,为了了解高一学生喜欢游泳是否与性别有关,现从高一学生中抽取100人做调查,得到列联表:

喜欢游泳

不喜欢游泳

合计

男生

40

女生

30

合计

100

且已知在100个人中随机抽取1人,抽到喜欢游泳的学生的概率为

1)请完成上面的列联表;

2)根据列联表的数据,是否有99.9%的把握认为喜欢游泳与性别有关?并说明你的理由.

参考公式与临界值表:

0.100

0.050

0.025

0.010

0.001

2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】勒洛三角形是具有类似圆的“定宽性”的面积最小的曲线,它由德国机械工程专家,机构运动学家勒洛首先发现,其作法是:以等边三角形每个顶点为圆心,以边长为半径,在另两个顶点间作一段弧,三段弧围成的曲边三角形就是勒洛三角形,现在勒洛三角形中随机取一点,则此点取自正三角形外的概率为( )

A.B.

C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我们知道,地球上的水资源有限,爱护地球、节约用水是我们每个人的义务与责任.某市政府为了对自来水的使用进行科学管理,节约水资源,计划确定一个家庭年用水量的标准.为此,对全市家庭日常用水量的情况进行抽样抽查,获得了个家庭某年的用水量(单位:立方米),统计结果如下表及图所示.

分组

频数

频率

25

0.19

50

0.23

0.18

5

1)分别求出的值;

2)若以各组区间中点值代表该组的取值,试估计全市家庭年均用水量;

3)从样本中年用水量在(单位:立方米)的5个家庭中任选3个,作进一步的跟踪研究,求年用水量最多的家庭被选中的概率(5个家庭的年用水量都不相等).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某调研机构,对本地岁的人群随机抽取人进行了一次生活习惯是否符合低碳观念的调查,将生活习惯符合低碳观念的称为“低碳族”,否则称为“非低碳族”,结果显示,有人为“低碳族”,该人的年龄情况对应的频率分布直方图如图.

1)根据频率分布直方图,估计这名“低碳族”年龄的平均值,中位数;

2)若在“低碳族”且年龄在的两组人群中,用分层抽样的方法抽取人,试估算每个年龄段应各抽取多少人?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量结果得如下频数分布表:

质量指标值分组

频数

6

26

38

22

8

1)在答题卡上画出这些数据的频率分布直方图(要求用阴影部分显示);

2)根据以上抽样调查数据,能否认为该企业生产的这种产品符合质量指标值不低于95的产品至少要占全部产品80%”的规定?

3)估计这种产品质量指标值的平均值及中位数(其中求平均值时同一组中的数据用该组区间的中点值作代表,求中位数精确到0.1).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,在直角梯形中,,点上,且,将沿折起,使得平面平面(如图2).中点

(1)求证:

(2)求四棱锥的体积;

(3)在线段上是否存在点,使得平面?若存在,求的值;若不存在,请说明理由

查看答案和解析>>

同步练习册答案