精英家教网 > 高中数学 > 题目详情
((本小题满分12分)
已知在四棱锥P-ABCD中,底面ABCD是边长为4的正方形,△PAD是正三角形,平面PAD⊥平面ABCDEFG分别是PAPBBC的中点.
(1)求证:EF平面PAD
(2)求平面EFG与平面ABCD所成锐二面角的大小;
解:方法1:(I)证明:∵平面PAD⊥平面ABCD

平面PAD,                                           )
EFPAPB的中点,
EF//AB,∴EF平面PAD;                                  …………4分
(II)解:过P作AD的垂线,垂足为O,
,则PO 平面ABCD
取AO中点M,连OG,,EO,EM,
∵EF //AB//OG,
∴OG即为面EFG与面ABCD的交线
又EM//OP,则EM平面ABCD.且OGAO,
故OGEO ∴ 即为所求      …………8分
 ,EM=OM=1 
∴tan              
∴平面EFG与平面ABCD所成锐二面角的大小是  …………12分
方法2:(I)证明:过PP O ADO,∵
PO 平面ABCD,连OG,以OGODOPx、yz轴建立空间坐标系,              …………2分
PAPD ,∴

,      …………(4分)


EF 平面PAD;                        …………4分
(II)解:
设平面EFG的一个法向量为 
,   …………8分
平面ABCD的一个法向量为……(12分)
平面EFG与平面ABCD所成锐二面角的余弦值是:
,锐二面角的大小是;             …………12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(满分12分)正方体ABCDA1B1C1D1 的棱长为 2,且AC BD 交于点OE 为棱DD1 中点,以A 为原点,建立空间直角坐标系Axyz,如图所示.
(Ⅰ)求证:B1O⊥平面EAC
(Ⅱ)若点 F EA 上且 B1FAE,试求点 F 的坐标;
(Ⅲ)求二面角B1EAC 的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(.(本小题满分12分)
如图,四棱锥S-ABCD的底面是矩形,ABa,AD2,SA1,且SA⊥底面ABCD,若

边BC上存在异于B,C的一点P,使得
(1)求a的最大值;
(2)当a取最大值时,求平面SCD的一个单位法向量
及点P到平面SCD的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知异面直线分别在平面内,且平面的交线为,则直线的位置关系是
A.与都平行 B.至多与中的一条相交
C.与都不平行D.至少与中的一条相交

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分10分)
如图,在四边形中,垂直平分,且,现将四边形沿折成直二面角,求:
(1)求二面角的正弦值;
(2)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图是某直三棱柱(侧棱与底面垂直)被削去上底后的直观图与三视图的侧视图、俯视图,在直观图中,M是BD的中点,侧视图是直角梯形,俯视图是等腰直角三角形,有关数据如图所示.
(I)求出该几何体的体积;
(II)求证:EM∥平面ABC


 
  (III)试问在棱DC上是否存在点N,使NM⊥平面?若存在,确定点N的位置;    若不存在,请说明理由.

 

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若一条直线与一个平面成720角,则这条直线与这个平面内不经过斜足的直线所成角中最大角等于(     )
A. 720B.900C. 1080 D.1800

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,为正方体的棱的中点,为棱上一点,,则        (   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在棱长为3的正四面体ABCD中,点E是线段AB上一点,且AE="1," 点F是线段AD上一点,且AF=2,则异面直线DECF的夹角的余弦为                

查看答案和解析>>

同步练习册答案