精英家教网 > 高中数学 > 题目详情

【题目】在△ABC中,角A,B,C的对边分别为a,b,c,且满足条件b2+c2﹣a2=bc=1,cosBcosC=﹣ ,则△ABC的周长为

【答案】 +
【解析】解:△ABC中,b2+c2﹣a2=bc=1,
∴cosA= = =
∴A=
∴B+C=
即cos(B+C)=cosBcosC﹣sinBsinC=﹣
又cosBcosC=﹣
∴sinBsinC=cosBcosC+ =﹣ + =
∴bc=4R2sinBsinC=4R2× =1,
解得R= ,其中R为△ABC的外接圆的半径;
∴a=2RsinA=2× ×sin =
∴b2+c2﹣2=1,
解得b2+c2=3,
∴(b+c)2=b2+c2+2bc=3+2×1=5,
∴b+c=
∴△ABC的周长为a+b+c= +
所以答案是: +
【考点精析】本题主要考查了余弦定理的定义的相关知识点,需要掌握余弦定理:;;才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在斜三梭柱ABC﹣A1B1C1中,侧面AA1C1C是菱形,AC1与A1C交于点O,E是棱AB上一点,且OE∥平面BCC1B1
(1)求证:E是AB中点;
(2)若AC1⊥A1B,求证:AC1⊥BC.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,平面底面.分别是的中点,求证:

(Ⅰ)底面

(Ⅱ)平面

(Ⅲ)平面平面.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)求函数的单调区间

(2)当判断函数在区间的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆直线过点且与圆相切 .

(I)求直线的方程;

(II)如图,圆轴交于两点,点是圆上异于的任意一点,过点且与轴垂直的直线为直线交直线于点直线交直线于点,求证:以为直径的圆轴交于定点并求出点的坐标 .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥底面为等腰梯形且底面与侧面垂直 分别为线段的中点 .

1证明: 平面

2与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点为F,直线x轴的交点为P,与抛物线的交点为Q,且

求抛物线的方程;

如图所示,过F的直线l与抛物线相交于两点,与圆相交于两点两点相邻,过两点分别作抛物线的切线,两条切线相交于点M,求的面积之积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 函数.

(1)求在区间上的最大值和最小值

(2)若 的值

3)若函数在区间上是单调递增函数求正数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】平面直角坐标系xOy中,过椭圆M: (a>b>0)右焦点的直线x+y﹣ =0交M于A,B两点,P为AB的中点,且OP的斜率为
(1)求M的方程
(2)C,D为M上的两点,若四边形ACBD的对角线CD⊥AB,求四边形ACBD面积的最大值.

查看答案和解析>>

同步练习册答案