精英家教网 > 高中数学 > 题目详情
9.已知抛物线y2=2px(p>0)上点T(3,t)到焦点F的距离为4.
(1)求t,p的值;
(2)设A,B是抛物线上分别位于x轴两侧的两个动点,且$\overrightarrow{OA}•\overrightarrow{OB}=5$(其中O为坐标原点).求证:直线AB过定点,并求出该定点的坐标.

分析 (1)利用抛物线y2=2px (p>0)上点T(3,t)到焦点F的距离为4,根据抛物线的定义,可求t,p的值;
(2)设直线AB的方程为x=my+t,代入抛物线方程,利用韦达定理,结合$\overrightarrow{OA}•\overrightarrow{OB}=5$,可求t的值,即可求出该定点P的坐标

解答 解:(1)由抛物线定义得,$3+\frac{p}{2}=4⇒p=2$…(2分)
所以抛物线方程为y2=4x,…(3分)
代入点T(3,t),可解得$t=±2\sqrt{3}$.…(5分)
(2)设直线AB的方程为x=my+n,$A(\frac{y_1^2}{4},{y_1})$,$B(\frac{y_2^2}{4},{y_2})$
联立$\left\{{\begin{array}{l}{{y^2}=4x}\\{x=my+n}\end{array}}\right.$消元得:y2-4my-4n=0,则:y1+y2=4m,y1y2=-4n…(8分)
由$\overrightarrow{OA}•\overrightarrow{OB}=5$得:$\frac{{{{({y_1}{y_2})}^2}}}{16}+{y_1}{y_2}=5$,所以:y1y2=-20或y1y2=4(舍去)
即-4n=-20⇒n=5,所以直线AB的方程为x=my+5,
所以直线AB过定点P(5,0)…(12分)

点评 本题考查抛物线的方程,考查直线与抛物线的位置关系,考查韦达定理的运用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.若(a+1)-1<(3-2a)-1,则实数a的取值范围是(-∞,-1)∪($\frac{2}{3}$,$\frac{3}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若tan(θ+$\frac{π}{4}$)=$\frac{1}{2}$,则sin2θ=$-\frac{3}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.以下判断正确的是(  )
A.函数y=f(x)为R上可导函数,则f′(x0)=0是x0为函数f(x)极值点的充要条件
B.命题“存在x∈R,x2+x-1<0”的否定是“任意x∈R,x2+x-1>0”
C.命题“在锐角△ABC中,有 sinA>cosB”为真命题
D.“b=0”是“函数f(x)=ax2+bx+c是偶函数”的充分不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若函数f(x)为定义在R上的奇函数,且在(0,+∞)为减函数,若f(2)=0,则不等式(x-1)f(x-1)>0的解集为(  )
A.(-3,-1)B.(-3,1)∪(2,+∞)C.(-3,0)∪(1,3)D.(-1,1)∪(1,3)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知m、n是不重合的直线,α、β是不重合的平面,正确的是(  )
A.若m⊥α,m⊥β,则α∥βB.若α∩β=n,m∥n,则m∥α,m∥β
C.若m∥α,m⊥n,则n⊥αD.若α⊥β,m⊥α,则m∥β

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知f(x)是定义在R上的偶函数,且当x≥0时,f(x)=$\frac{x-2}{x+1}$,若对任意实数$t∈[{\frac{1}{2},2}]$,都有f(t+a)-f(t-1)>0恒成立,则实数a的取值范围是(-∞,-3)∪(0,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若三点A($\frac{1}{4}$,$\frac{1}{4}$),B(a,0),C(0,b) (ab≠0)共线,则$\frac{1}{a}$+$\frac{1}{b}$的值等于4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在△ABC中,(a+b+c)(a+b-c)=3ab,且acosB=bcosA,试判断△ABC的形状.

查看答案和解析>>

同步练习册答案