精英家教网 > 高中数学 > 题目详情
已知关于x的方程x2+(2k-1)x+k2=0有两个大于1的根,则k的取值范围是
 
分析:由已知中关于x的方程x2+(2k-1)x+k2=0有两个大于1的根,则△>0,我们构造二次函数f(x)=x2+(2k-1)x+k2,可得f(1)>0,且对称轴x=
1-2k
2
在1的右侧,由此构造关于k的不等式组,解不等式组,即可得到k的取值范围.
解答:解:∵方程x2+(2k-1)x+k2=0的两个根大于1,
令f(x)=x2+(2k-1)x+k2
f(1)>0
1-2k
2
>1
△=1-4k>0

解得k<-2
故答案为:(-∞,-2).
点评:本题考查的知识点是一元二次方程的根的分布与系数的关系,其中构造二次函数,利用函数的性质解答本题是整个解答过程的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知关于x的方程|x2-6x|=a(a>0)的解集为P,则P中所有元素的和可能是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知关于x的方程x2-2mx+m-3=0的两个实数根x1,x2满足x1∈(-1,0),x2∈(3,+∞),则实数m的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知关于x的方程x2-(1-i)x+m+2i=0有实根,则m=
-6
-6

查看答案和解析>>

科目:高中数学 来源: 题型:

已知关于x的方程x2+(2+a)x+1+a+b=0的两根为x1,x2,且0<x1<1<x2,则
2a+3b
3a
的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知关于x的方程x2+2px-(q2-2)=0(p,q∈R)无实根,则p+q的取值范围是
(-2,2)
(-2,2)

查看答案和解析>>

同步练习册答案