精英家教网 > 高中数学 > 题目详情

设α∈(0,),方程表示焦点在x轴上的椭圆,则α∈

A.(0,           B.(0,)           C.(,)         D.[,)

 

【答案】

C

【解析】

试题分析:表示焦点在x轴上的椭圆,则有

考点:椭圆的标准方程

点评:焦点在哪个轴上要看x,y哪一个变量的分母大

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<
π2
)在一个周期内的图象如图所示.
(1)求函数的解析式;
(2)设0<x<π,且方程f(x)=m有两个不同的实数根,求实数m的取值范围和这两个根的和.

查看答案和解析>>

科目:高中数学 来源: 题型:

设关于x的方程x2-(m+i)x-(2+i)=0,m是实数;
(1)若上述方程有实根,求出其实根以及此时实数m的值;
(2)证明:对任意实数m,方程不存在纯虚数根.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x|x|+bx+c,给出以下四个命题:
①当c=0时,有f(-x)=-f(x)成立;      
②当b=0,c>0时,方程f(x)=0,只有一个实数根;
③函数y=f(x)的图象关于点(0,c)对称   
④当x>0时,函数f(x)=x|x|+bx+c,f(x)有最小值是c-
b22

其中正确的命题的序号是
①②③
①②③

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列命题:
①若a>b,n=2k+1,(k∈N*),则an>bn;  ②若ab≥0,则|a-b|=|a|-|b|;③设A(m,m+1),B(2,m-1),则直线AB的倾斜角α=arctan
2m-2
;④如果曲线C上的点的坐标(x,y)满足方程F(x,y)=0,则方程,F(x,y)=0的曲线是C.其中真命题的序号是

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•韶关一模)设抛物线C的方程为x2=4y,M为直线l:y=-m(m>0)上任意一点,过点M作抛物线C的两条切线MA,MB,切点分别为A,B.
(1)当M的坐标为(0,-1)时,求过M,A,B三点的圆的方程,并判断直线l与此圆的位置关系;
(2)求证:直线AB恒过定点;
(3)当m变化时,试探究直线l上是否存在点M,使△MAB为直角三角形,若存在,有几个这样的点,若不存在,说明理由.

查看答案和解析>>

同步练习册答案