精英家教网 > 高中数学 > 题目详情
1.将函数y=sin(x-$\frac{π}{3}$),x∈R的图象上各点的横坐标伸长到原来的2倍(纵坐标不变),再向左平移$\frac{π}{6}$个单位,所得函数的解析式为y=sin($\frac{1}{2}$x-$\frac{π}{4}$).

分析 由条件利用函数y=Asin(ωx+φ)的图象变换规律,得出结论.

解答 解:将函数y=sin(x-$\frac{π}{3}$),x∈R的图象上各点的横坐标伸长到原来的2倍(纵坐标不变),可得y=sin($\frac{1}{2}$x-$\frac{π}{3}$)的图象;
再向左平移$\frac{π}{6}$个单位,所得函数的解析式为y=sin[$\frac{1}{2}$(x+$\frac{π}{6}$)-$\frac{π}{3}$]=sin($\frac{1}{2}$x-$\frac{π}{4}$),
故答案为:y=sin($\frac{1}{2}$x-$\frac{π}{4}$).

点评 本题主要考查函数y=Asin(ωx+φ)的图象变换规律,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)是R上的奇函数,且当x<0时,函数的解析式为f(x)=x(1-x),求函数f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.函数f(x)=1-2sinx(sinx+$\sqrt{3}$cosx)的图象向左平移$\frac{π}{3}$个单位得函数g(x)的图象,则函数g(x)的解析式是(  )
A.g(x)=2sin(2x-$\frac{π}{2}$)B.g(x)=2cos2xC.g(x)=2cos(2x+$\frac{2π}{3}$)D.g(x)=2sin(2x+π)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知点P(1,1),圆C:x2+y2-4x=2,过点P的直线l与圆C交于A,B两点,线段AB的中点为M(M不同于P),若|OP|=|OM|,则l的方程是3x+y-4=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.人在雨中行走的速度不同导致淋雨量有很大不同,即淋雨量y是人行走速度x的函数,设 y=x3-6x2+9x+4.试求淋雨量最小时的人的行走速度.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.设f(x)为定义在R上的奇函数,当x≥0时,f(x)=2x+3log2(x+1)+m(m为常数),则m=0,f(-1)=-5.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.过椭圆$\frac{{x}^{2}}{6}$+$\frac{{y}^{2}}{5}$=1内一点P(2,-1)作直线与椭圆交于A,B两点,若|PA|=|PB|.则直线AB的方程是5x-3y-13=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知曲线x2+y2=Ax+By+C过原点,则必有C=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.与圆x2+y2-8x-4y+16=0相切,且在两坐标轴上的截距相等的直线有4条.

查看答案和解析>>

同步练习册答案