精英家教网 > 高中数学 > 题目详情

【题目】已知命题p:方程表示焦点在x轴上的椭圆;命题q:双曲线的离心率e.若命题“pq”为真命题,“pq”为假命题,求m的取值范围.

【答案】

【解析】试题分析:若p真,则m>6-m>0,解得m范围.若q真,则m>0且且e2=1+ =1+ ,2),解得: <m<5,pq为真命题,pq为假命题,可得p,q中有且只有一个为真命题,即p,q必一真一假.

试题解析:

若p真,则m>6-m>0,解得:3<m<6,若q真,则m>0且e2=1+=1+∈(,2),解得:<m<5,∵p∨q为真命题,p∧q为假命题,∴p,q中有且只有一个为真命题,即p,q必一真一假,①若p真q假,则,即5≤m<6;②若p假q真,则,即<m≤3;∴实数m的取值范围为:(,3]∪[5,6).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】四名同学根据各自的样本数据研究变量之间的相关关系,并求得回归直线方程,分别得到以下四个结论:(  )

负相关且. ②负相关且

正相关且正相关且

其中正确的结论的序号是(

A. ①② B. ②③ C. ①④ D. ③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本题满分12分)为选拔选手参加中国汉字听写大会,某中学举行了一次汉字听写大赛活动.为了了解本次竞赛学生的成绩情况,从中抽取了部分学生的分数(得分取正整数,满分为100分)作为样本(样本容量为)进行统计.按照的分组作出频率分布直方图,并作出样本分数的茎叶图(图中仅列出了得分在的数据).

1)求样本容量和频率分布直方图中的的值;

2)在选取的样本中,从竞赛成绩在80分以上(含80分)的学生中随机抽取2名学生参加中国汉字听写大会,求所抽取的2名学生中至少有一人得分在内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某高级中学共有学生2000名,各年级男、女生人数如表:

已知在全校学生中随机抽取1名,抽到高二年级女生的概率是0.19.

(1)求的值;

(2)现用分层抽样的方法在全校抽取48名学生,问应该在高三年级抽取多少名?

(3)已知,求高三年级中女生比男生多的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从抛物线y2=32x上各点向x轴作垂线,其垂线段中点的轨迹为E.

(1)求轨迹E的方程;

(2)已知直线ly=kx-2)(k>0)与轨迹E交于A,B两点,且点F(2,0),若|AF|=2|BF|,求弦AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和为Sn,且Sn=2n2+n,n∈N,数列{bn}满足an=4log2bn+3,n∈N.

(1)求an,bn

(2)求数列{anbn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={x|a﹣1≤x≤2a+3},B={x|﹣2≤x≤4},全集U=R
(1)当a=2时,求A∪B和(RA)∩B;
(2)若A∩B=A,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆)的离心率是,过点的动直线与椭圆相交于 两点,当直线平行于轴时,直线被椭圆截得的线段长为

(1)求椭圆的方程;

(2)当时,求直线的方程;

(3)记椭圆的右顶点为,点)在椭圆上,直线轴于点,点与点关于轴对称,直线轴于点.问: 轴上是否存在点,使得为坐标原点)?若存在,求点坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥P-ABCD的底面ABCD是平行四边形,BA=BD=,AD=2,PA=PD=,E,F分别是棱AD,PC的中点.

(1)证明:EF平面PAB;

(2)若二面角P-AD-B为60°

证明:平面PBC平面ABCD;

求直线EF与平面PBC所成角的正弦值.

查看答案和解析>>

同步练习册答案