精英家教网 > 高中数学 > 题目详情
3.在区间[0,2]上随机地取一个数x,则事件“0≤x≤$\frac{3}{2}$”发生的概率为$\frac{3}{4}$.

分析 本题利用几何概型求概率.利用0≤x≤$\frac{3}{2}$”的区间长度与区间[0,2]的长度求比值即得.

解答 解:利用几何概型,其测度为线段的长度.
事件“0≤x≤$\frac{3}{2}$”发生的概率为$\frac{\frac{3}{2}-0}{2-0}$=$\frac{3}{4}$.
故答案为:$\frac{3}{4}$.

点评 本题主要考查了几何概型,简单地说,如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.如图,AD是⊙O的直径,B为⊙O上的一点,连接AB并延长至点E,使得AE=AD,连接DE,交⊙O于点C,连接OC.
(1)求证:OC∥AE;
(2)若OC=AB,判断△BCE的形状并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知P(-1,1)为曲线上的一点,PQ为曲线的割线,若kPQ当△x→0时的极限为-2,则在点P处的切线的方程为2x+y+1=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知f(x)=$\left\{{\begin{array}{l}{|{x-1}|-2}&{({|x|≤1})}\\{-\frac{{{x^2}+2}}{{1+{x^2}}}}&{({|x|>1})}\end{array}}$,若f(a)=-$\frac{6}{5}$,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知数列{an}满足a1=1,(2n-1)an+1=2(2n+1)an,则a6=352.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知集合A={x|x2-2x-3≤0},B={x|m-2≤x≤m+2,m∈R}.
(1)若A∩B=[0,3],求实数m的值;
(2)若A⊆∁RB,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数f(x)=sin(ωx+φ)($ω>0,|φ|<\frac{π}{2}$)的部分图象如图所示,则y=f(x)的图象可由y=cosωx的图象(  )
A.向右平移$\frac{π}{3}$个长度单位B.向左平移$\frac{π}{3}$个长度单位
C.向右平移$\frac{π}{6}$个长度单位D.向左平移$\frac{π}{6}$个长度单位

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.下列命题错误的是(  )
A.命题“若x2+y2=0,则x=y=0”的逆否命题为“若x,y中至少有一个不为0则x2+y2≠0”
B.若命题p:?x0∈R,x02-x0+1≤0,则¬p:?x∈R,x2-x+1>0
C.△ABC中,sinA>sinB是A>B的充要条件
D.若向量$\overrightarrow{a}$,$\overrightarrow{b}$满足$\overrightarrow{a}$•$\overrightarrow{b}$>0,则$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为锐角

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若${x^2}+\frac{1}{2}mx+k$是一个完全平方式,则k=$\frac{1}{16}{m}^{2}$.

查看答案和解析>>

同步练习册答案