精英家教网 > 高中数学 > 题目详情

(本题满分12分)通常情况下,同一地区一天的温度随时间变化的曲线接近于函数的图像.2013年1月下旬荆门地区连续几天最高温度都出现在14时,最高温度为;最低温度出现在凌晨2时,最低温度为零下.
(Ⅰ)请推理荆门地区该时段的温度函数
的表达式;
(Ⅱ)29日上午9时某高中将举行期末考试,如果温度低于,教室就要开空调,请问届时学校后勤应该送电吗?

(1) ; (2)应该开空调.

解析试题分析:(1)(3分)
(5分)(6分);
(2)(8分)
,(11分)    所以应该开空调. (12分)
考点:本题考查了三角函数的实际运用
点评:在实际应用问题中,常常引入辅助角参数沟通变量之间的联系,这时,常可利用辅助角的正、余弦的有界性求出最小值。构造辅助角模型,利用正、余弦函数的有界性求出的最值,一定要验证取最值时的角是否存在且在给定的区间内,以防上当受骗.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
统计表明,某种型号的汽车在匀速行驶中每小时耗油量y(升)关于行驶速度x(千米/小时)的函数解析式可以表示为:.已知甲、乙两地相距100千米。
(1)当汽车以40千米/小时的速度匀速行驶时,从甲地到乙地要耗油多少升?
(2)当汽车以多大的速度匀速行驶时,从甲地到乙地耗油最少?最少为多少升?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

一变压器的铁芯截面为正十字型,为保证所需的磁通量,要求十字应具有 的面积,问应如何设计十字型宽及长,才能使其外接圆的周长最短,这样可使绕在铁芯上的铜线最节省.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

解方程:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分16分)
如图,开发商欲对边长为的正方形地段进行市场开发,拟在该地段的一角建设一个景观,需要建一条道路(点分别在上),根据规划要求的周长为

(1)设,求证:
(2)欲使的面积最小,试确定点的位置.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某工厂生产一种产品,已知该产品的月产量x吨与每吨产品的价格(元)之间的关系为,且生产吨的成本为(元).问该厂每月生产多少吨产品才能使利润达到最大?最大利润是多少?(利润=收入-成本)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

为了应对国际原油的变化,某地建设一座油料库。现在油料库已储油料吨,计划正式运营后的第一年进油量为已储油量的,以后每年的进油量为上一年年底储油量的,且每年运出吨,设为正式运营第n年年底的储油量。(其中
(1)求的表达式
(2)为应对突发事件,该油库年底储油量不得少于吨,如果吨,该油库能否长期按计划运营?如果可以请加以证明;如果不行请求出最多可以运营几年。(取

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分10分)
已知函数f (x)=| xa | + | x + 2 |(a为常数,且aR).
(Ⅰ)若函数f (x)的最小值为2,求a的值;
(Ⅱ)当a=2时,解不等式f (x)6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函

(1)用分段函数的形式表示该函数;(2)画出该函数的图象;(3)写出该函数的值域。

查看答案和解析>>

同步练习册答案