精英家教网 > 高中数学 > 题目详情
16.已知双曲线的渐近线方程为$y=±\sqrt{3}x$,一个焦点为$(0,-2\sqrt{2})$,则双曲线的标准方程是$\frac{{y}^{2}}{6}$-$\frac{{x}^{2}}{2}$=1.

分析 根据题意,根据双曲线焦点的坐标可以设其标准方程为:$\frac{{y}^{2}}{{a}^{2}}$-$\frac{{x}^{2}}{{b}^{2}}$=1,且有a2+b2=c2=8,①,利用标准方程表示出其渐近线方程为:y=±$\frac{a}{b}$x,结合题意可得$\frac{a}{b}$=$\sqrt{3}$,②
联立两式,解可得a2、b2的值,将其代入双曲线的标准方程即可得答案.

解答 解:根据题意,要求双曲线的一个焦点为$(0,-2\sqrt{2})$,在y轴上,
可以设其标准方程为:$\frac{{y}^{2}}{{a}^{2}}$-$\frac{{x}^{2}}{{b}^{2}}$=1,且有a2+b2=c2=8,①
其渐近线方程为:y=±$\frac{a}{b}$x,
又由该双曲线的渐近线方程为$y=±\sqrt{3}x$,则有$\frac{a}{b}$=$\sqrt{3}$,②
联立①、②可得:a2=6,b2=2,
则要求双曲线的方程为:$\frac{{y}^{2}}{6}$-$\frac{{x}^{2}}{2}$=1;
故答案为:$\frac{{y}^{2}}{6}$-$\frac{{x}^{2}}{2}$=1.

点评 本题考查双曲线的简单几何性质,涉及双曲线的焦点、渐近线的求法,需要由焦点的位置先设出双曲线的方程.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知函数$f(x)=\frac{x}{{{x^2}+1}}+1$,g(x)=x2eax(a<0).
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)若对任意x1,x2∈[0,2],f(x1)≥g(x2)恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知二次函数y=f(x)的图象与x轴的交点为(-1,0)和(4,0),与y轴的交点为(0,4),则该函数的单调递减区间为(  )
A.$(-∞,\frac{3}{2}]$B.$[\frac{3}{2},+∞)$C.(-∞,-1]D.[4,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.执行如图所示的程序框图,如果输入n=3,则输出的 S=(  )
A.$\frac{4}{9}$B.$\frac{8}{9}$C.$\frac{3}{7}$D.$\frac{6}{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知:$\overrightarrow{OA}$=(-3,1),$\overrightarrow{OB}$=(0,5),且$\overrightarrow{AC}$∥$\overrightarrow{OB}$,$\overrightarrow{BC}$⊥$\overrightarrow{AB}$,则点C的坐标为$(-3,\frac{29}{4})$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.函数y=logax,y=ax,y=x+a(a>0,a≠1)在同一直角坐标系中的图象如图,正确的为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.椭圆$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1上一点P到它的一个焦点的距离等于2,那么点P到另一个焦点的距离等于2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,在梯形ABCD中,AB∥CD,AB=4,AD=DC=CB=2,四边形ACFE是矩形,AE=1,平面ACFE⊥平面ABCD,点G是BF的中点.
(1)求证:CG∥平面ADF;
(2)直线BE与平面ACFE所成角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.据环保部通报,2016年10月24日起,京津冀周边雾霾又起,为此,环保部及时提出防控建议,推动应对工作由过去“大水漫灌式”的减排方式转变为实现精确打击.某燃煤企业为提高应急联动的同步性,新购置并安装了先进的废气处理设备,使产生的废气经过过滤后排放,以降低对大气环境的污染,已知过滤后废气的污染物数量N(单位:mg/L)与过滤时间t(单位:小时)间的关系为N(t)=N0e-λt(N0,λ均为非零常数,e为自然对数的底数)其中N0为t=0时的污染物数量,若经过5小时过滤后污染物数量为$\frac{1}{e}$N0
(1)求常数λ的值;
(2)试计算污染物减少到最初的10%至少需要多少时间?(精确到1小时)
参考数据:ln3≈1.10,ln5≈1.61,ln10≈2.30.

查看答案和解析>>

同步练习册答案