精英家教网 > 高中数学 > 题目详情
(考生注意:请在下列三题中任选一题作答,如果多做,则按所做的第一题评分)
A.(不等式选做题)不等式|x+1|≥|x+2|的解集为   
B.(几何证明选做题)如图所示,过⊙O外一点P作一条直线与⊙O交于A,B两点,
已知PA=2,点P到⊙O的切线长PT=4,则弦AB的长为   
C.(坐标系与参数方程选做题)若直线3x+4y+m=0与圆(θ为参数)没有公共点,则实数m的取值范围是   
【答案】分析:A:根据a≥b≥0,则a2≥b2,将等式|x+1|≥|x+2|转化为一个整式不等式,解变形后的不等式即可得到答案;
B:利用切割线定理,我们易求出PB的长,进而求出AB的长;
C;由圆的参数方程,我们易判断出圆的圆心和半径,根据直线与圆的位置关系,我们易构造一个关于m的不等式,解不等式即可得到实数m的取值范围.
解答:解:A:不等式|x+1|≥|x+2|可化为
(x+1)2≥(x+2)2
即2x+1≥4x+4
解得x≤-
故不等式|x+1|≥|x+2|的解集为
故答案为:
B:由切割线定理可得:
PT2=PA•PB
∵PA=2,PT=4
∴PB=8
∴AB=6
故答案为:6
C:圆的圆心为(1,-2)半径为1
若直线3x+4y+m=0与圆(θ为参数)没有公共点
则表示圆心到直线的距离大于半径

即|m-5|>5
解得m∈(-∞,0)∪(10,+∞)
故答案为:(-∞,0)∪(10,+∞)
点评:本题考查的知识点是与圆有关的比例线段,直线与圆的位置关系,圆的参数方程,绝对值不等式的解法.A中绝对值不等式的解法关键是要将不等式中的绝对值符号去掉;B中由已知利用切割线定理求出PB是关键;C中利用圆的参数方程求出圆的圆心坐标及半径是解答的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网(考生注意:请在下列三题中任选一题作答,如果多做,则按所做的第一题评分)
A.(不等式选做题)不等式|x+1|≥|x+2|的解集为
 

B.(几何证明选做题)如图所示,过⊙O外一点P作一条直线与⊙O交于A,B两点,
已知PA=2,点P到⊙O的切线长PT=4,则弦AB的长为
 

C.(坐标系与参数方程选做题)若直线3x+4y+m=0与圆
x=1+cosθ
y=-2+sinθ
(θ为参数)没有公共点,则实数m的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(三选一,考生注意:请在下列三题中任选一题作答,如果多做,则按所做的第一题评分)
(1)(坐标系与参数方程选做题)在直角坐标系中圆C的参数方程为
x=1+2cosθ
y=
3
+2sinθ
(θ为参数),则圆C的普通方程为
(x-1)2+(y-
3
)2=4
(x-1)2+(y-
3
)2=4

(2)(不等式选讲选做题)设函数f(x)=|2x+1|-|x-4|,则不等式f(x)>2的解集为
{x|x<-7或x>
5
3
}
{x|x<-7或x>
5
3
}

(3)(几何证明选讲选做题) 如图所示,等腰三角形ABC的底边AC长为6,其外接圆的半径长为5,则三角形ABC的面积是
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(考生注意:请在下列三题中任选一题作答,如果多做,则按所做的第一题评阅记分)
(A)(几何证明选做题)如图,CD是圆O的切线,切点为C,点B在圆O上,BC=2,∠BCD=30°,则圆O的面积为

(B)(极坐标系与参数方程选做题)极坐标方程ρ=2sinθ+4cosθ表示的曲线截θ=
π
4
(ρ∈R)
所得的弦长为
3
2
3
2

(C)(不等式选做题)  不等式|2x-1|<|x|+1解集是
(0,2)
(0,2)

查看答案和解析>>

科目:高中数学 来源: 题型:

(考生注意:请在下列三题中任选一题作答,如果多做,则按所做的第一题评阅记分)
A.如图,△ABC是⊙O的内接三角形,PA是⊙O的切线,PB交AC于点E,交⊙O于点D.若PA=PE,∠ABC=60°,PD=1,PB=9,则EC=
4
4

B. P为曲线C1
x=1+cosθ
y=sinθ
,(θ为参数)上一点,则它到直线C2
x=1+2t
y=2
(t为参数)距离的最小值为
1
1

C.不等式|x2-3x-4|>x+1的解集为
{x|x>5或x<-1或-1<x<3}
{x|x>5或x<-1或-1<x<3}

查看答案和解析>>

科目:高中数学 来源: 题型:

(考生注意:请在下列二题中任选一题作答,如果多做,则按所做的第一题评阅记分.)
(A)(选修4-4坐标系与参数方程)曲线
x=cosα
y=a+sinα
(α为参数)与曲线ρ2-2ρcosθ=0的交点个数为
 
个.
(B)(选修4-5不等式选讲)若不等式|x+1|+|x-3| ≥a+
4
a
对任意的实数x恒成立,则实数a的取值范围是
 

查看答案和解析>>

同步练习册答案