精英家教网 > 高中数学 > 题目详情
10.如图,四边形ABCD是⊙O的内接四边形,延长AB和DC相交于点P,若$\frac{PB}{PA}$=$\frac{1}{2}$,$\frac{PC}{PD}$=$\frac{1}{3}$,则$\frac{BC}{AD}$的值为$\frac{\sqrt{6}}{6}$.

分析 利用边形ABCD是⊙O的内接四边形,延长AB和DC相交于点P,可得PB×PA=PC×PD,△PBC∽△PDA,由此可得结论.

解答 解:∵四边形ABCD是⊙O的内接四边形,延长AB和DC相交于点P
∴PB×PA=PC×PD,△PBC∽△PDA
∴$\frac{BC}{AD}$=$\frac{PB}{PD}$
∵$\frac{PB}{PA}$=$\frac{1}{2}$,$\frac{PC}{PD}$=$\frac{1}{3}$,
∴2PB2=$\frac{1}{3}$PD2
∴$\frac{PB}{PD}$=$\frac{\sqrt{6}}{6}$,
∴$\frac{BC}{AD}$=$\frac{\sqrt{6}}{6}$.
故答案为:$\frac{\sqrt{6}}{6}$.

点评 本题考查圆内接四边形的性质,考查三角形的相似,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.已知函数f(x)是(-∞,0)∪(0,+∞)上的奇函数,当x>0时,f(x)=-$\frac{1}{x}$+1
(1)当x<0时,求函数f(x)的解析式;
(2)证明函数f(x)在区间(-∞,0)上是单调增函数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.直线3x+4y=b与圆x2+y2-2x-2y+1=0相切,则b=(  )
A.-2或12B.2或-12C.-2或-12D.2或12

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.设函数f(x)=x2+(2a-1)x+4,若x1<x2,x1+x2=0时,有f(x1)>f(x2),则实数a的取值范围是(-∞,$\frac{1}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知f(x)=$\frac{1-x}{1+x}$.
(1)求f(f(2)))的值;
(2)若实数a满足f(a2)=$-\frac{3}{5}$,且lg2a-1<0,求a的值;
(3)设函数f1(x)=f(x)=$\frac{1-x}{1+x}$(x≠-1),对于一切正整数n,都有fn+1(x)=f1(fn(x)),且f3(x)=f4(x),求f2012(x)的值;
(4)设函数φ(x)=$\frac{1+x}{x-1}|x-2{|}^{\frac{1}{2}}$(x≠1),若函数g(x)=f(x)•φ(x),t=a2-2a+$\frac{13}{3}$(a∈R),试判断g(1.2),g(2.5),g(t)的大小关系.(请按由大到小的顺序排)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知数列{an}满足:a1=1,n∈N*
(1)若an+1=2an+n+1,求数列的通项an
(2)若an+1=2an+4n+2,求数列的通项an
(3)若an+1=$\frac{{a}_{n}}{-7{a}_{n}-6}$,求数列的通项an
(4)若an+1=an2+2an,求数列的通项an

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.小明一家三口都会下棋,在假期里的每一天中,父母都交替与小明下棋,已知小明胜父亲的概率是$\frac{1}{2}$,胜母亲的概率是$\frac{2}{3}$,且各盘棋之间是相互独立的.
(1)如果共下7盘棋,并且小明与父亲先下,求小明恰胜一盘的概率;
(2)如果共下3盘棋,小明与父亲先下,且规定每胜一盘得1分,每负一盘减1分,求小明最终得分ξ的分布列;
(3)某天父母与小明约定下三盘棋,只要他在三盘中能至少连胜两盘,就给他买新的钢笔,那么小明为了获胜希望更大,他应该先与父亲下,还是先与母亲下?请用计算说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数${f_n}(x)=a{x^n}+bx+c(a,b,c∈R)$
(1)若f1(x)=3x+1,f2(x)为偶函数,求a,b,c的值;
(2)若对任意实数x,不等式$2x≤{f_2}(x)≤\frac{1}{2}{(x+1)^2}$恒成立,求f2(-1)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=x|x-m|,x∈R,且f(4)=0.
(1)求实数m的值;
(2)作出函数f(x)的图象并直接写出f(x)单调减区间.

查看答案和解析>>

同步练习册答案