精英家教网 > 高中数学 > 题目详情
11.已知函数f(x)=log${\;}_{\frac{1}{2}}$$\frac{1-ax}{x-1}$的图象关于原点对称,其中a为常数.
(1)求a的值;
(2)当x∈(1,+∞)时,f(x)+log${\;}_{\frac{1}{2}}$(x+1)<m恒成立,求实数m的取值范围;
(3)若关于x的方程f(x)=log${\;}_{\frac{1}{2}}$(x+k)在[2,3]上有解,求k的取值范围.

分析 (1)根据函数的奇偶性,求出a的值即可;
(2)求出f(x)+${log}_{\frac{1}{2}}$(x-1)=${log}_{\frac{1}{2}}$(1+x),根据函数的单调性求出m的范围即可;
(3)问题转化为k=$\frac{2}{x-1}$-x+1在[2,3]上有解,即g(x)=$\frac{2}{x-1}$-x+1在[2,3]上递减,根据函数的单调性求出g(x)的值域,从而求出k的范围即可.

解答 解:(1)∵函数f(x)的图象关于原点对称,
∴函数f(x)为奇函数,
∴f(-x)=-f(x),
即${log}_{\frac{1}{2}}$$\frac{1+ax}{-x-1}$=-${log}_{\frac{1}{2}}$$\frac{1-ax}{x-1}$=${log}_{\frac{1}{2}}$$\frac{x-1}{1-ax}$,
解得:a=-1或a=1(舍);
(2)f(x)+${log}_{\frac{1}{2}}$(x-1)=${log}_{\frac{1}{2}}$$\frac{1+x}{1-x}$+${log}_{\frac{1}{2}}$(x-1)=${log}_{\frac{1}{2}}$(1+x),
x>1时,${log}_{\frac{1}{2}}$(1+x)<-1,
∵x∈(1,+∞)时,f(x)+${log}_{\frac{1}{2}}$(x-1)<m恒成立,
∴m≥-1;
(3)由(1)得:f(x)=${log}_{\frac{1}{2}}$(x+k),
即${log}_{\frac{1}{2}}$$\frac{x+1}{x-1}$=${log}_{\frac{1}{2}}$(x+k),
即$\frac{x+1}{x-1}$=x+k,即k=$\frac{2}{x-1}$-x+1在[2,3]上有解,
g(x)=$\frac{2}{x-1}$-x+1在[2,3]上递减,
g(x)的值域是[-1,1],
∴k∈[-1,1].

点评 本题考查了函数的单调性、最值问题,考查函数的奇偶性以及函数的值域问题,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.曲线y=x2+1在点P(-1,2)处的切线方程为(  )
A.y=-x+3B.y=-2x+4C.y=-x+1D.y=-2x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知圆C:x2+(y-1)2=9,直线l:x-my+m-2=0,且直线l与圆C相交于A、B两点.
(Ⅰ)若|AB|=4$\sqrt{2}$,求直线l的倾斜角;
(Ⅱ)若点P(2,1)满足$\overrightarrow{AP}$=$\overrightarrow{PB}$,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知△ABC的内角A、B、C所对的边分别为a、b、c,且sinB(tanA+tanC)=tanAtanC.
(1)求证:b2=ac;
(2)若a=2c=2,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知a${\;}^{\frac{1}{2}}$=$\frac{4}{9}$(a>0),则log${\;}_{\frac{2}{3}}$a=4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.在棱长为2的正四面体ABCD中,E,F分别是BC,AD的中点,则$\overrightarrow{AE}$$•\overrightarrow{CF}$=(  )
A.0B.-2C.2D.-3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.如图,在△ABC中,AB=2,AC=3,∠BAC=60°,AD是∠BAC的角平分线交BC于D,则$\overrightarrow{AD}$$•\overrightarrow{AC}$的值等于(  )
A.$\frac{17}{5}$B.$\frac{33}{5}$C.6D.$\frac{27}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.点P(1,-4)到直线4x+3y-2=0的距离为(  )
A.2B.5C.7D.10

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若10件产品中有7件正品,3件次品,从中任取2件,则恰好取到1件次品的概率是(  )
A.$\frac{3}{7}$B.$\frac{7}{15}$C.$\frac{8}{15}$D.$\frac{4}{7}$

查看答案和解析>>

同步练习册答案